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Abstract

Human cognitive signals reflect humans’ attention distribution and neural activation re-
garding different parts of the input, which are crucial in understanding the mechanism
behind their language processing behaviour. Computational linguistics research aims
to optimize language models to achieve a human-like level of performance in natural
language processing tasks, ideally in an accountable fashion. This renders integrating
human cognitive signals into language models an intriguing research area to optimize their
downstream task performances in an accountable fashion. Previous works exploring how
cognition data could enhance natural language processing (NLP) tasks bore limitations
such as weak accuracy increase, heavy engineering bias, and limited generalizability of
conclusions drawn from experiments on outdated models. This thesis addresses these
issues by introducing a novel approach that leverages prompt-based fine-tuning. In particu-
lar, two methods were proposed: (1) inspired by ‘hard prompting’, Method 1 uses gaze
and electroencephalography (EEG) features as discrete prompt tokens to modify model be-
haviour during training; (2) drawing on ‘soft prompting’, Method 2 designs a multi-modal
prompting framework called ‘CogMAP’ (Cognition Mapping And Prompting), which
employs these cognition features as multidimensional prompting vectors projected into
the continuous embedding space of language models. Task results on ternary sentiment
classification were consistently superior when incorporating either gaze or EEG data as
prompts in both methods p < 0.001, across encoder-only BERT-based models and decoder-
only GPT-2-based models. This study signifies a leap in cognition-inspired NLP research,
addressing existing limitations while providing a new robust and effective paradigm for
future investigations of bridging the gap between human cognition and artificial language

processing to improve the performance and understanding of language models.
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Introduction

While large language models have achieved impressive growth of capability in a wide
range of tasks, they have not yet surpassed humen across numerous downstream language
processing tasks (Fitzsimmons et al., 2014; He et al., 2021). Specifically, natural language
processing (NLP) research faces challenges in understanding context, task-generic per-
formance, and overfitting to the bias presented in the limited training data. Therefore, it
remains an active area of research and a challenge for the field to address these limitations,
exploring directions such as incorporating external knowledge, leveraging multi-modal
data, etc. (Tamkin et al., 2021), in order to close the performance gap between language
models and human performance across various language processing tasks.

Cognition signals can reflect human processing efforts and cognitive load on each
word, and could therefore provide extra information on the contextual dependency and
predictability of a word among its neighbours. Based on the background, cognition signals
provided by human readers, a special category of multi-modal data outside speech, vision or
text, are promising in enhancing language models in an accountable approach, by providing
insight into how humans process natural language input, as proposed by a field of cognition-
inspired research (also interchangeably called cognition-enhanced/ motivated/integrated
research)(Barrett et al., 2016; Ding et al., 2022; Mishra et al., 2017; Ren and Xiong, 2021;
Sood et al., 2020b). Such human-oriented cognition data range from eye-tracking signals,
neurophysiological measurements including electroencephalography (EEG), functional
magnetic resonance imaging (fMRI) data and heart rate, to user-generated feedback on
a macro level. Among them, eye-tracking data (also called gaze data) captures overt
attention, i.e., where and how long individuals focus their gaze while reading texts (Rayner,
1998), while EEG captures brain activity related to text processing via voltage fluctuations
detected on the scalp, which includes information about cognitive processes such as
both covert attention (i.e., processing efforts assigned to a point not manifested on eye
movements) and overt attention, memory encoding and retrieval, comprehension, and
emotional responses (Shoka et al., 2019). Due to the high temporal resolution nature of



the two technologies, they can capture fine-grained word-level cognition features that are
suitable to be leveraged by language models.

Why can cognition signals potentially facilitate the task-specific performance of lan-
guage models in training? Prior related works lacked a systematic theoretical contextual-
ization of the motivation underlying their empirical exploration of the topic (Hollenstein
et al., 2020a, 2019, 2018a; Sood et al., 2020b). Only Ding et al. (2022) self-defined a
‘cognitive theory’ from language acquisition research (Scarborough et al., 2009) which is
not an accurate representation of the actual framework. Therefore, this thesis trace back to
several fundamental psycholinguistics theories to systematically established the rationale
of cognition-inspired research, including embodied cognition, selective attention theory,
etc. (elaborated in Related Works).
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Fig. 1.1 Scanpath visualizaton of gaze points measured by eye-tracking technology on a
sentence. The values aside each point denote the fixation duration on the gaze points in
milliseconds. A fixation is the period of time where the gaze of a reader is maintained on a
single location. In this example, for the word ‘Mary’ and ‘French’, number of fixations =
2 while for the rest of the words number of fixations = 1.

In brief, cognition signals can provide additional information about the corresponding
text sequence on both token level and sequence level, which can potentially facilitate
for language models across task performances. Such information can be categorized
as three aspects: (1) syntactic and semantic information about different tokens (Barrett
and Hollenstein, 2020; Barrett and Sggaard, 2015; Clifton Jr et al., 2007); (2) attention
distribution which indicates the relative importance of the words and their contextual
interdependency for effcitient processing and prediction (Duggan and Payne, 2011); (3)
in the case of sentiment classification in this study, eye movements and neuron activation
detected by EEG can further reveal processing patterns exclusively related to emotional
response.

It is therefore tempting to explore whether we can exploit the information provided
by human cognitive signals to improve the model performances and generalize the ability
over tasks.



Task Human Attention (number of fixations)

2)NR | The ISIS has done so many terrible things in Syria and caused chaos in the MithEaS| ' fix
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Fig. 1.2 Heatmap visualizaton of number of fixations, one of the variables in eye-tracking
measures, in different task paradigms for participants. NR (Normal Reading) refers to
human reading without tasks.

Combining with the above-mentioned motivation, the increasing affordability of eye-
tracking and neuroimaging technology has also contributed to the feasibility of cognition-
inspired NLP: in recent years there have flourished multiple eye-tracking and EEG corpora
that collected data from human participants reading samples from well-established NLP
task-specific benchmark datasets as text materials (Cop et al., 2017; Hollenstein et al.,
2020b; Sui et al., 2022). Such cognition corpora were mostly designed for NLP research
and composed of two parts: (1) textual data with (e.g., ZuCo (Hollenstein et al., 2018b)) or
without (e.g., GECO (Cop et al., 2017)) NLP task annotations, and (2) word-level human
cognition signals measured simultaneously in a normal or task-specific reading paradigm.
Hence, this line of research can utilize the numerous features in eye-tracking and EEG
signals like number of fixations, fixation durations, voltage frequency of each electronode,
etc. to establish a multi-dimensional feature vector for a word, where each dimension
contains the information about a certain variable.

Recent cognitively-inspired NLP research adopted two major approaches to incorpo-
rating cognition signals into language models, firstly by augmenting word embeddings
directly with cognition features as additional embeddings in non-pre-trained neural net-
works (Hollenstein et al., 2019) e.g., Bi-LSTMs (Hochreiter and Schmidhuber, 1997),
secondly by regularizing the attention weights in the model as an auxiliary training task
(McGuire and Tomuro, 2021). However, their approach of direct finetuning on the text ma-
terial with weighted sampling from cognition signals induces not so striking performance
boost (Hollenstein et al., 2020c; McGuire and Tomuro, 2021).

Some scholars, therefore, tried to strengthen the positive impact of cognition features
by adding preprocessing steps before training, e.g., extract self-categorized linguistic
features filtered by word-level cognition signal values (Ding et al., 2022), or de-noising
the cognition signals by adding modality alignment algorithms before training the LM’s
attention (Ren and Xiong, 2021). In these works, multiple neural networks (mostly Bi-

LSTMs) were utilized for various intermediate purposes to achieve the final training results.



As aresult, such works suffered from heavily biased feature engineering, implementation
complexity due to multiple training tasks and complex architecture design, and as a result,
low generasability to more task paradigms and the larger state-of-the-art language models.

Considering both the weak enhancement results and the methodological deficits in
previous cognition-inspired NLP research, the current study aims to achieve a much more
effective yet straightforward approach to integrating cognition signals into state-of-the-art
pre-trained language models including both BERT-based encoder-only and GPT-2-based

decoder-only models, which remains a blank territory at the current stage.

Current Study This thesis proposes a more robust integration framework by treating
human cognition recorded by EEG and eye-tracking as a new modality of data, and
introduced prompt-based fine-tuning from prompting research, an increasingly mainstream
model deployment paradigm in recent years, to cognition-inspired research for the first
time. In particular, this thesis has introduced two methodologies for incorporating cognitive
data as prompts:

Method 1, inspired by the *hard prompting’ method that employs discrete tokens as
prompts, flattens each word-level gaze feature and synthesized EEG feature to a single
dimension. These are treated as unique tokens, and collectively form a sequence of special
tokens. Each sequence represents the cognitive processing information for a word that has
been tokenized in the cognitive corpora.

Method 2, taking inspiration from the continuous ’soft’ prompts in the form of input
vectors, treats gaze and EEG features for each sequence as sequences of multidimensional
vectors. Every feature in the gaze data and EEG data contributes to one of the dimensions.
These vectors, along with the corresponding text input, are imported to a new multimodal
framework known as ‘CogMAP’ (Cognition Mapping And Prompting) designed by this
study. The CogMAP framework maps the dimension of the cognitive vectors to match the
input dimension of the backbone language model, inserting them before each corresponding
sentence in the input as soft prompts. These prompts are then trained for sentiment
classification tasks. Given the task nature and the backbone models to be elaborated on
later, the parameters of both the language model and the projection layer are updated
during training.

Overall, this thesis offered exclusive contributions to renewing the methodological

paradigms of cognition-inspired research by providing the following findings:

1. The prompt-based finetuning approach is proved feasible and effective to be adapted
to cognition-enhanced NLP research by integrating cognition data as multimodal
prompt input, achieving an impressive performance boost in ternary sentiment

classification without the necessity of manually placing supervision on each model’s



attention layers. This approach can be further adapted to two implementation
methods:

(a) Cognition features can be introduced as effective prompts to state-of-the-art
pre-trained models by concatenating text input with numerical cognition signals

either as discrete special tokens (Method 1).

(b) Cognition features can be treated as multidimensional vectors and projected as

continuous prompts in the pre-trained LM’s embedding space (Method 2).

2. This study is conducted on a wide range of advanced state-of-the-art language models,
including auto-regressive decoder-only and bidirectional encoder-only pre-trained
attention-based models, in order to expand the ablation validity and generalizability
of the methodology. This is the first time cognition-enhanced research achieved
effective enhancement on decoder-only pre-trained models (as previous works mostly

focused on simple neural networks, transformers, or BERT as backbone models).

3. Both EEG and gaze (i.e., eye-tracking) signals can provide unique, positive guidance
to the language models’ classification performance, although the degree of this
influence can vary. Future research is encouraged in exploring the fine-grained
preprocessing methods in denoising EEG data to optimise the leveraging of cognition
signals data on advanced language models.

4. The new CogMAP framework also shed inspiration on multi-modal NLP research
about grounding language models to other modalities, more precisely, effective
multi-modal data incorporating strategies for language models in small-data-size
settings.

Significance The significance of the current study unfolds across four key dimensions.
First, it addresses the methodological limitations and weaknesses of previous research
in utilizing cognitive data to advance NLP research. These include heavy engineering
bias in processing cognitive signals, reliance on outdated backbone models, and a lack of
generalisability across diverse tasks and model types.

Second, this research pioneers the exploration of cognition-prompting. By treating
cognitive data as prompt input that is concatenated with corresponding texts, the study
exploits the long-range contextual learning ability of state-of-the-art pre-trained language
models. This innovative approach allows the model to capture the meta-cognitive associa-
tions between the text and cognitive prompts, pushing the boundaries of our understanding
in this area and achieving a leap of performance enhancement compared to previous works
(Barrett et al., 2016; Hollenstein et al., 2019; McGuire and Tomuro, 2021).



Third, the study delves into the detailed investigation of the soft-cognition-prompting
method within the continuous embedding space of a language model. This provides a
platform for a range of future research opportunities, including the application of cognition-
prompted language models for instruction tuning, modular tuning, and the integration of
numerical reasoning with cognitive-inspired research.

In essence, this study not only addresses existing limitations but also paves the way for
groundbreaking advances in the interdisciplinary field of cognition-inspired NLP research.
By harnessing the power of cognitive data and state-of-the-art models, this research offers

exciting potential for enhancing the performance and understanding of language models.



Related Works

2.1 Human Cognition Signals in NLP

The human sentence processing behaviour can be measured via technologies such as eye-
tracking, electroencephalogram (EEG), functional magnetic resonance imaging (fMRI),
etc., which reveal the reader’s varying cognitive processing efforts on each token during
different stages of reading processing. In addition, psycholinguistic experiments have also
demonstrated that such cognitive processing signals can effectively reflect the relevant
textual information of a token in reading comprehension that encompasses word-level
features in syntax, semantics, pragmatics, logic, etc. (Rayner et al., 2004; Weiss and
Mueller, 2003). This roughly established the feasibility and justification of cognitively-
enhanced NLP research. In particular, eye-tracking and EEG data have been popular
options to integrate into language models due to their high temporal resolutions, capturing
real-time bodily reactions to each perceptual span (i.e., the visual contextual window
focusing on the target word).

The section will introduce eye-tracking and EEG in detail as the most representative
of cognitive signals, then explain the mechanisms which support them to improve the
sentiment classification performance of NLP models separately, and finally describe ZuCo
(Hollenstein et al., 2018b), the corpus used in the current study, clarifying its provided

cognition features to be incorporated in the current experiments.

2.1.1 Eye-Tracking
What is it?

Among cognitive processing signals, eye-tracking data (also interchangeably called gaze
data) provides online measurements with millisecond accuracy on the fixation, saccades,

and word skipping behaviour of a reader’s eye movements in a close-to-natural reading
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experimental set-up (Rayner, 1977). These signals capture the eye movements and fixations
that occur when an individual is engaged in a task, such as reading or image processing.
The tracking of these ocular activities enables researchers to gauge the points of focus, the
sequence of focus shifts, and the time spent on each focus point (Rayner, 1998).

Based on the embodied cognition theory which fundamentally posits that cognitive
processing can be reflected by physiological and sensor-motor activities such as eye
movements, eye-tracking signals can provide unique insights into overt attention, i.e., the
amount of attention or relative importance a human reader assigned to certain words in
a sequence, as reflected from eye movements. For instance, longer fixation durations
often correlate with increased cognitive processing. Conversely, rapid saccades (quick eye
movements) between words might indicate a smoother reading flow. This makes these
signals a potent tool for studying cognitive load, attention distribution, and processing

patterns in psycholinguistics research (Degen et al., 2021; Kaiser, 2013).

How does it facilitate NLP models?

The mechanisms that the incorporation of cognition signals into language models can
enhance the processing of NLP models can be divided into three levels: (1) indicating
selective attention distribution to the task-related parts of a sequence, (2) conveying
contextual linguistic information that in general enhanced the in-context learning ability
and semantic embedding space of the language model, and (3) the analogical correlation
between the human cognitive attention and the model attention in ubiquitous transformer-
based LMs.

Firstly, according to the selective attention theory from cognitive psychology (John-
ston and Dark, 1986), due to the limited capacity of working memory, humans selectively
pay attention to the most ‘important’ information when processing a text (i.e., the partial
information that contributes most to the correct understanding of the texts or to the optimal
completion of the language processing tasks). Therefore, by indicating processing efforts
and attention distribution, the eye movement features ultimately reflect the hidden semantic
characteristics of each word in a sentence that are closely associated with the reading
objective. As shown in the case of a number of fixations in Figl.2, such word-level feature
values are highly contingent on the variation of task paradigms and whether the semantics
of the targeted word is associated with the task objective. Even when reading the same
sentence, there are considerably more fixations on sentiment-related and attitude-related
words ‘terrible’ and ‘chaos’ than the others in the task-specific reading paradigms for (b)
sentiment classification. In contrast, the fixation focus shifted towards named entities in
the (c) NER paradigm.
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Apart from the direct association between the fixation results indicating selective
attention distribution and the task label, the eye movement data can also indicate complex
contextual linguistic factors of the words in the sequence (Clifton Jr et al., 2007; Demberg
and Keller, 2008). As a result, such linguistic information reflected in the gaze data can
provide additional contextual cues to the language model outside the semantic information
provided by the text input.

As established by psycholinguistics research, these linguistic features include morpho-
logical and syntactic complexity features at early or later stages of language processing
that can be studied separately. In terms of morphological features, for instance, the word
frequency effect (Rayner, 1977) posits that word length, frequency and predictability from
context affect fixation duration and counts. As another well-known example, readers are
more likely to fixate on open-class words (Carpenter and Just, 1983); In terms of syntactic
features for later stages of sentence processing, a prime illustration is from Barrett and
S@gaard (2015) who found that most syntactic categories can be reliably predicted from
eye movements of readers, represented by 10 derived variables such as fixation probability
on the target word, whether the previous word is fixated, whether next word is fixated,
number of fixations, first fixation duration, and so on. This study supplemented fixation
information about the preceding and subsequent words due to the consideration of the
spillover effect and preview effect in eye movements, which was considered as a guideline
for more efficient utilization and aggregation of word-level gaze features in subsequent
cognition-inspired NLP studies (Barrett and Hollenstein, 2020). Since then, Barrett et al.
(2016); Hollenstein et al. (2019); Hollenstein and Zhang (2019) adapted such derived
categories of gaze features as integration sources for early models like CNN, Bi-LSTMM,
etc. Along with theoretical connections, these studies served as empirical evidence that
justifies the motivation of developing cognition-enhanced NLP research (which will be
elaborated later in Section 2.2).

Lastly, gaze data can potentially help regulate the attention weights or the gradient-
based saliency of the prediction output of language models, based on the approximation
between them. Attention NLP-related neuroscience studies have conducted comparative
analogies between the LM attention mechanism and the human attention extracted from the
cognition corpora. For instance, Hao et al. (2021) fitted the fixation durations of each word
from eye-tracking data by a mixed-effect analysis model to the attention weights in LSTMs
(Hochreiter and Schmidhuber, 1997) and transformers (Vaswani et al., 2017), concluding
that such correlation is robust and independent of model perplexity across different neural
networks. Sood et al. (2020a) as well as Bensemann et al. (2022) delved deeper into
pretrained language models and found that the association strength differ in attention layers
(Bahdanau et al., 2014): earlier layers (esp. first layer) of BERT (Devlin et al., 2018) shows

the highest correlations consistently, although notable exceptions occurred in multilingual
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encoders (Hollenstein et al., 2021). Hollenstein and Beinborn (2021); Ikhwantri et al.
(2023)

The approximation between gaze features shaped the possibility to explore whether
gaze features can optimize when integrated into language models. McGuire and Tomuro
(2021) examined an increased similarity between human attention represented by fixation
durations and EEG features after using them to supervise BERT’s attention layers in relation
classification task-specific fine-tuning, which explains why the cognition-integrated model
can predict more correctly where the baseline failed. Ding et al. (2022), using a different
training approach in integrating cognition data, also drew a similar conclusion in attention
similarity analysis.

Therefore, based on the three aspects of potential facilitation, in the context of natural
language processing (NLP), by integrating these eye-tracking signals with NLP tasks,
cognition-inspired research aims to build models that capture and leverage these reading

patterns to improve their performance.

2.1.2 EEG
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Fig. 2.1 A subset visualization of the preprocessed EEG data during the sentence, from
ZuCo (Hollenstein et al., 2018b). Electrodes matching the 10-20 systems (F7-F8) were
chosen for feature demonstration; for plotting purposes, data were bandpass-filtered
(0.5-30 Hz). Such fluctuation information within a time frame is extracted and mapped to
the fixation time window of words shown from eye-tracking data, rendering word-level
EEG features shown in Table 2.1.

What is it?

Electroencephalography (EEG) measures potential fluctuations caused by the activity of
neurons in the cerebral cortex, as demonstrated in Fig 2.1. The recorded signals reflect the
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collective activity of neurons close to the electrode, enabling the measurement of real-time
brain activity across different regions. Hence, EEG can exclusively capture the processing
efforts over a sequence beyond eye movements (i.e., covert attention).

Within the NLP field, EEG signals can be used to understand the neurological underpin-
nings of language comprehension and production. For example, certain patterns of brain
activity can correspond to the processing of semantic or syntactic information in a sentence.
By associating these patterns with NLP tasks, we can create more cognitively congruent
models that mirror human-like language processing (Hollenstein et al., 2020b; Shoka
et al., 2019). Furthermore, EEG signals can help detect cognitive load or engagement
level, which could be used to adjust the complexity level of generated text or to customize
learning materials dynamically.

How does it facilitate NLP models?

Studies exploring EEG data for NLP development are more limited, the first of which
was in 2019 (Hollenstein et al., 2019), since its corpus collection is more expensive
and time-consuming. However, because EEG and eye-tracking use the same temporal
resolution with non-invasive technologies (Sereno and Rayner, 2003), the three aspects of
the mechanisms for eye-tracking features supporting NLP models in downstream tasks
should also apply to EEG.

EEG data can also reveal the underlying linguistic properties of the text input. Dambacher
and Kliegl (2007) found that longer fixation duration correlates with larger N400 amplitude
effects. N400 is part of the normal brain response to words and other meaningful stimuli
(Kutas and Federmeier, 2000). Effects of word predictability on eye movements and EEG
co-registration have also been studied in serialized word representation and in natural
reading (Dimigen et al., 2011). In terms of syntactic categories, EEG also can reflect
differences in processing verbs and nouns, concrete nouns and abstract nouns, as well as
common nouns and proper nouns (Weiss and Mueller, 2003).

2.1.3 Cognition Corpora for NLP Research

The primary dataset utilized in this study is the Zurich Cognitive Language Processing
Corpus (ZuCo), as detailed by Hollenstein et al. (2018b). As the first openly accessible
corpus featuring concurrent eye-tracking and EEG recordings during natural sentence
reading, the ZuCo corpus encompasses recordings from 12 adult native English speakers,
each engaging with roughly two paradigms of 1,100 English sentences. The choice of
datasets in this paper is based on the established rigorousness of the ZuCo datasets by
empirical literature that supports the dataset as an accurate and representative corpus of
eye-tracking and EEG data to denote human processing (Ding et al., 2022; Hollenstein
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et al., 2020a, 2018a; McGuire and Tomuro, 2021; Ren and Xiong, 2021). However, the
methodology framework in this study can be easily scaled up to more cognition datasets
that are growing in recent five years.

For the task of sentiment classification, ZuCo includes a reading paradigm that contains
400 positive, negative and neutral sentences (8138 tokens) from the Stanford Sentiment
Treebank (Socher et al., 2013), to analyze the elicitation of emotions and opinions during
reading. Gaze data and EEG data are recorded simultaneously on readers in a natural
reading setting with the hidden goal of comprehending and identifying the sentiment of
the text.

To ensure effective measurements, a control condition was interleaved with the experi-
mental condition where the subjects were to rate the quality of the described movies in 47
of the 400 sentences. The average response accuracy compared to the ground-truth labels
of the Stanford Sentiment Treebank is 79.53%.

Gaze features Eye position and pupil size were recorded with an infrared video-based
eye tracker (EyeLink 1000 Plus) at a sampling rate of 500 Hz and an instrumental spatial
resolution of 0.01°. Five basic eye-tracking features were extracted and provided as

word-level variables:

1. Gaze Duration (GD), which accounts for the aggregate of all fixations on the present

word during the initial read-through before the eye progresses beyond it;

2. Total Reading Time (TRT), which encapsulates the combined duration of all fixations

on the target word, including regressions to it;

3. First Fixation Duration (FFD), representing the duration of the initial fixation on the

target word;

4. Go-Past Time (GPT), the cumulative duration of all fixations before moving right-
ward beyond the current word, including movements to antecedent words that

originated from the ongoing word.

5. Number of Fixations (nFix), which refers to how many times the reader has fixated

on the target word during reading, including regressions to it.

From a psycholinguistics perspective, each of the five gaze variables should render
exclusive yet complementary information about different processing stages and linguistic
features regarding the target word in the sentence. GD and FFD provide insights into the
initial stages of lexical access and word recognition, shedding light on the complexity
of the word or its fit within the sentence’s context "to a human’s eye"; TRT includes all

processing efforts over a word and is hence an indicator of overall cognitive processing
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Table 2.1 Example of word-level cognition data for a text sample. The demonstrated
sample contains a sequence of 23 words in the example based on the sequence length, and
thus 23 arrays of cognition signals. Each array encompasses 5 eye-tracking feature values
and 105 EEG feature values.

Text sequence ’Presents a good case while failing to provide a reason for us to care beyond the very basic dictums of human decency.’
Sequence Label NEUTRAL
Gaze features EEG electrodes
word word_index
FFD | GD | GPT | TRT | nFix | F7 | FP1 | ...(102 omitted columns)... P3
Presents 1 120 | 110 | 130 | 600 5 0.12 | 0.15 0.22
Word-level cognition data
a 2 100 | 100 | 120 | 580 4 10.11]0.14 0.20
... (omitted rows)...
decency. 23 \ 115 \ 115 \ 125 \ 590 \ 45 \ 0.13 \ 0.16 \ \ 0.23

effort for the word; GPT reflects the difficulty in integrating the word into the sentence
context for syntactic and semantic processing; nFix is an integer value for the frequency
of a reader’s gaze returning to the word, indicating the reader’s need for re-analysis or
confirmation and heavily influencing the GD, TRT, and GPT values. Together, these
gaze metrics offer a multifaceted view of a reader’s cognitive engagement with a word
during sentence reading, reflecting a variety of cognitive processes including lexical access,

syntactic parsing, and semantic integration.

EEG features Because EEG signals were recorded simultaneously with eye-tracking,
ZuCo provides available word-level EEG signals over 128 electrodes by offline referencing
and aligning the temporal stamps of the two signals. The recorded EEG signals consist of
voltage fluctuations generated by ionic currents within the neurons of the brain. Prepro-
cessing steps in ZuCo included filtering to remove noise, correcting for eye movement and
blinks, segmenting the continuous EEG signal into epochs related to specific events (e.g.,
reading a word), etc (Hollenstein et al., 2018b). The electrical activity detected by a given
electrode reflects the cumulative activity of millions of neurons near that electrode, which
are normalized together with eye-tracking data in most cognition-inspired research.

There are altogether 128 EEG electrodes employed in ZuCo datasets. After basic
preprocessing and erasing sections unrelated to language processing, there remain 105
useful electrodes, rendering 105 EEG features available for incorporation in this study (Fig
2.1).

It is crucial for the current study to address the term "word-level features" in the context
of EEG and eye-tracking data. In the ZuCo corpus, this term refers to the splitting of
sequences into separate words, each of which is associated with specific eye-tracking and
EEG feature values. These values symbolize cognitive processing effort or neural activity
pertinent to each word. However, such word splitting in the original dataset does not align
with the tokenization configurations of a language model. This is a critical consideration

when integrating cognitive data into language models to establish associations, ensuring
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that the data aligns accurately with the model’s structure and requirements. The distinction
between the word splitting and LM tokenization will be revisited in the methodology and
results sections to elucidate its potential impacts on training outcomes in some experimental

scenarios.

2.2 Empirical Approaches to Incorporating Eye-tracking
and EEG Corpora

The majority of cognition-enhanced research focuses on the most common two types of
cognition data: eye-tracking and EEG, with the exploration of the latter relatively limited
due to its higher cost for collection and lower signal-to-noise ratio which requires expertise
to perform preprocessing (Hollenstein et al., 2020a; Ren and Xiong, 2021).

In early works, eye-tracking signals have been used in machine learning approaches
to a range of NLP tasks, such as part-of-speech tagging (Barrett et al., 2016), multi-word
expression extraction (Rohanian et al., 2017), syntactic category prediction (Barrett and
S¢gaard, 2015). Later when developing neural models, there are mainly two approaches
to incorporating cognition data into language models in the existing research. One is
directly augmenting the word embeddings with eye tracking or EEG features as additional
layers, while the other is leveraging the cognition signals to supervise neural attention to
approximate the online human attention when reading the same texts. The two approaches

are broken down in the following subsections.

2.2.1 Augmenting Embedding Layers

The first approach has been popular when the predominant language model to employ for
NLP research is a neural network like a transformer. The simple architecture of such neural
networks enables the feasibility to practice a direct combination of the word embeddings
with the cognition features by augmenting the embedding dimensions. For example, Mishra
et al. (2017) augment linguistic features used for sentiment analysis and sarcasm detection
(e.g., from WordNet) with eye-tracking features; Hollenstein et al. (2019) extracted the
Glove word embeddings to augment the embedding layers with both eye-tracking and
EEG features, and trained a Bi-LSTM on named entity recognition, sentiment analysis,
and relationship classification. Similar studies were also conducted on other sequence
classification tasks including grammatical error detection (Barrett et al., 2018), readability

prediction (Gonzalez-Garduno and Sggaard, 2018).
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However, this approach inevitably depends on a simple neural network structure as the
backbone model, and is therefore fatally restrained along with the development of large

prestrained language models as the state-of-the-art models for task-specific deployment.

2.2.2 Cognition Signals as Attention Supervision

Another trend is using cognition signals as the supervision label to selectively enhance
or constrain the model attention. For example, McGuire and Tomuro (2021) utilized this
strategy in a multitask learning paradigm, training BERT on relation classification while
setting an auxiliary training task on supervising BERT’s attention weights with the gaze
features from ZuCo. However, they failed to observe a significant increase in classification
F1 scores.

Later works explored designing modular frameworks in order to better supervise the
model’s attention (Barrett et al., 2018; Sood et al., 2020b,a; Takmaz et al., 2020). Sood et
al. (2020) built a hybrid text saliency model by combining a Bi-LSTM with a transformer.
CogAlign (Ren and Xiong, 2021) adopted two separate encoders for two modalities of
input and a shared encoder (i.e., three interconnected Bi-LSTMs), together with a special
modality discriminator and text-aware attention for alignment. They used adversarial
learning to train the model. CogBERT (Ding et al., 2022) paired cognition features with
linguistic features (e.g., content words) extracted using the SpaCY tool and filtered out
statistically insignificant linguistic features by referencing human attention in the eye-
tracking data. Muttenthaler et al. (2020) leverage EEG features to regularize attention on

relation extraction.

2.2.3 Limitations of Previous Cognition-Integrated NLP Research

Having reviewed the related works in leveraging eye-tracking and EEG data when training
language models, this section summarized several limitations in their methodologies that

this study aims to address using the novel prompt-based tuning paradigm.

Heavy human-biased engineering in feature extraction

The majority of NLP studies leveraging human gaze signals from reading use a selective
range of manually-defined features for task-specific training rather than the basic word-
level features provided by the cognition corpora. However, there lack of consistency and
concrete reasons for their practices of signal pre-processing and feature extraction. For
example, Barrett et al. (2016) derived 22 gaze features for a part-of-speech tagging task,
from the basic fives gaze variables in ZuCo which allegedly encompass both early and

late measures of cognitive processing from a psycholinguistic perspective (e.g., re-read
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probability), as well as context features calculated from gaze variables of the surrounding
words (e.g., w+1 fixation probability, w-1 fixation duration). Hollenstein and Zhang (2019)
modified the features to 17 for named entity recognition, but maintained the 5 basic gaze
features for the relation classification and sentiment analysis task paradigm. Strzyz et al.
(2019) opted for 12 features for dependency parsing. On the other hand, some works
obtained a single value out of the five gaze features as a proxy to represent the overall
attention to a word: Barrett et al. (2018) used the mean fixation duration by dividing
total reading time (TRT) by the number of fixations (nFix), and McGuire and Tomuro
(2021) chose TRT itself. As for EEG features, Hollenstein and Zhang (2019); Ren and
Xiong (2021); Sood et al. (2020b) grouped the EEG values on all electrodes to 8 common
frequency bands; McGuire and Tomuro (2021) obtained a scalar per word by averaging
over all EEG electrodes, while Muttenthaler et al. (2020) took the maximum value.

Further, it has been a common practice to amalgamate linguistic features with gaze
features, as this combination has been demonstrated to bolster model performance (e.g.,
Rohanian et al. (2017) and Yaneva et al. (2018)). Barrett et al. (2016) use word frequency
and word length features in combination with eye-tracking features, because the two
properties explain much of the variance in fixation duration (Just and Carpenter, 1980;
Levy, 2008). This practice has been followed by most of the later literature: In Hollenstein
and Zhang (2019) and Barrett et al. (2018), word frequency and word length are auxiliary
learning tasks in parallel with the gaze or EEG features. Ding et al. (2022); Ren and
Xiong (2021, 2022) focused on a more fine-grained framework to model the relationship
between cognitive processing signals and linguistic features, by assigning a cognition-
informed “importance scores’ to each linguistic feature. In such bridging frameworks,
more specific linguistic features were introduced on the levels of lexical, syntax, and
semantics and selected based on the criteria of ’interpretability’ and ’extensibility’ (e.g.,
lexical density, complex nominals per clause, sentence length, subject number, object
number, discourse connector count). Nevertheless, the classification and selection criteria
for these features lack strong justification, appearing to be more a product of empirical
trial-and-error exploration that are only applicable to the mode-specific and task-specific
experimental setting than of theory-based or evidence-based reasoning, thereby lacking a
universally accepted reference point for future research.

As shown, all these previous works rely on heavy feature engineering to ensure the
desired effect of integrating cognitive information to LMs (Hollenstein et al., 2020a). How-
ever, such human-guided feature engineering can bring a number of potential disadvantages.
Firstly, the inherent subjectivity of human-defined features leads to a lack of consistency
across different studies. This variability not only hinders the generalization of the research
but also constrains the direct comparison and benchmarking of different models; Secondly,

the process of manual feature engineering is labor-intensive and time-consuming, since
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it requires not only extensive psycholinguistic knowledge but also substantial effort into
the careful selection and implementation of these features. Last and most importantly,
by depending so heavily on manually engineered features, the methods risked imposing
arbitrary boundaries on the model’s ability to learn and generalize. These boundaries are
based on the current understanding of language and cognition in psycho-linguistics, which,
while advanced, remains incomplete. This may lead to models that are overly tailored to
specific tasks or datasets, lacking the robustness and flexibility required to handle new,

unseen data or to adapt to evolving language use.

Outdated and non-scalable Training Methods

Previous cognition-related NLP research leverage fine-tuning to incorporate cognitive
signals, by treating them as either extra layers of augmentable word embeddings (e.g.,
(Hollenstein and Zhang, 2019)) or guiding supervision signals for attention weight supervi-
sion as auxiliary tasks in multitask learning paradigms (e.g., (McGuire and Tomuro, 2021;
Ren and Xiong, 2021; Sood et al., 2020b); (McGuire and Tomuro, 2021)). In particular, the
former approach of directly augmenting dimensions of word embeddings with dimensions
of cognitive features is not replicable on pre-trained LMs like BERT, let alone large LMs
with exponentially bigger parameters, that constitute multiple layers of neural network,
with each layer importing and forwarding a fixed multi-dimension of attention masks and
word embeddings. This is because the simple neural networks like Bi-LSTM adopted by
Hollenstein et al. (2019) can be trained from scratch with a self-defined dimension of word
embeddings as input, whereas in comparison it is impractical and likely detrimental for
the model performance to modify the inner structure of a multilayer pretrained model
to process word embeddings whose dimensions are not the same as the pretraining con-
figuration. Hence, although there have been reported comparative performance growths
from integrating cognition data into the model over the baseline, such pioneering work
admittedly lost its relevance with the evolving LMs and NLP research.

Another potential weakness of previous works is concerned with the potential hazard
of directly fine-tuning the model attention with human cognition signals. The cognition
datasets available for model fine-tuning are relatively insufficient with irrelevant or mis-
leading noise. When placed in front of the enormous capacity of current large language
models, this creates a problem of over-fitting in situations of data sparsity, and in turn, hurts
the generalizability of cognition-integrated research as the trained model would easily be
overfitted to the cognition signals provided together with the textual input. What’s more,
because of the sensitivity to training data in direct model fine-tuning, supervising model
attention with the cognition signals exposes the model to the exaggerated impact of signal

noise which extensively damaged the model performance even below baselines. Based
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on this methodological concern, it could explain the weak or null results in empirical
explorations of cognition-inspired NLP studies, e.g., McGuire and Tomuro (2021) failed
to find a significant increase of accuracy by supervising BERT’s attention with either gaze
or EEG data.

In summary, the old-school training techniques imposed greater and greater challenges
to adapt these previous training methods to increasingly large LMs. These challenges
are further reinforced considering the relatively high cost of collecting cognition corpora
using neuroimaging resources. Therefore, the current field of cognition-inspired research
calls for more effective and stable-to-noise approaches to incorporating cognition data for

performance gains.

2.3 Prompting Technique in Applying Large LMs to Down-

stream Tasks

Among empirical methods developed for deploying pre-trained large language models for
downstream tasks, prompting has been proposed as an alternative to counter the drawbacks
of model fine-tuning in response to the increasing size of large language models. It will be
introduced and elaborated in this section why prompting can be significantly advantageous
as a new method to integrate cognition data into state-of-the-art pretrained language

models.

2.3.1 Introduction

Prompting offers another approach to adapt pre-trained language models to specific tasks
by optimize the input. In a general sense, prompting refers to prepending carefully crafted
prompts to the task input to guide the pre-trained model to produce the desired output.
This makes prompting a versatile as well as efficient tool for various tasks, especially for
training settings with small datasets on LMs of a large parameter size.

In their survey of comprehensive development of prompting research, Liu et al. (2023)
commented that NLP research is witnessing a significant paradigm shift, transitioning from
the "pre-train, fine-tune" method to a new approach of "pre-train, prompt, and predict".
In this emergent framework, rather than modifying pre-trained LMs to suit downstream
tasks via meticulous objective engineering, these tasks are restructured to resemble those
addressed during the original LM training through the use of textual prompts. For instance,
in the task of sentiment classification on "I missed the bus today", a prompting choice can
be such as "I felt so ...", and then task the LM to complete the sentence with an appropriate

emotion-laden word that can serve as intermediate output for probability prediction. Thus,
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by choosing the right prompts, we can effectively guide the model’s behaviour, enabling
the pre-trained LM to predict the expected output. For example, Sun and Lai (2020) utilize
keyword-based prompting to guide the sentiment or theme of the sentences generated by
the model.

2.3.2 Prompt Types

Two Placements There are two main varieties of prompts: (1) cloze prompts (Petroni et
al., 2019; Cui et al., 2021), which require filling in the blanks of a textual string, hence
interleaved with the original text input, and (2) prefix prompts (Li and Liang, 2021; Lester
et al., 2021), which continue a string prefix before the input.

Two Forms On the other hand, in many cases these template words do not necessarily
take the form of natural language tokens (i.e., hard prompts) but virtual words which
would be embedded in a continuous space later. Further, some prompting methods even
generate continuous vectors directly by concatenating the word vectors with the prompt
vectors. This format is also termed continuous prompts (or soft prompts). Since the
answer tokens are optimized directly in the embedding space, research using the soft-
prompting method do not make use of the embeddings learned by the LM and instead
learns an embedding from scratch for each label. As discussed later, this logic in prompt
design provides the feasibility for the current study in formatting cognition features into
multidimensional vectors that can be projected into the embedding space of the LM, hence
as soft prompts for integration with the text input.

2.3.3 Prompt Design: Discrete vs Continuous

Effective prompting can often require significant trial and error or expert knowledge to craft
the most effective prompts. In the search for optimized prompts, prompt engineering has
been explored in prior works (Liu et al., 2019; Jiang et al., 2020; Schick and Schutze, 2020).
Aligned with the categories of soft prompts and discrete prompts, prompt engineering
methods also include searching for virtual tokens or virtual vectors that are conditioned on
the original input.

Works on discovering discrete prompts (a.k.a hard prompts) automatically search
for templates described in a discrete space, usually corresponding to natural language
phrases. Specifically developed methods include prompt mining (Jiang et al., 2020),
prompt paraphrasing, and gradient-based search (Wallace et al., 2019a), etc. For instance,
AutoPrompt, as proposed by Shin et al. (2020), applied gradient-based searches for
a sequence of discrete trigger tokens conditioned on each original input iteratively to
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stimulate sentiment detection or factual knowledge extraction from a masked Language
Model (LM).

In contrast, because the purpose of prompt construction is to find a method that allows
an LM to effectively perform a task, rather than being for human consumption, it is
not necessary to limit the prompt to human-interpretable natural language. Therefore,
continuous prompts in the form of vectors (a.k.a. soft prompts) are developed that perform
prompting directly in the embedding space of the model.

Generally, continuous prompts remove two constraints (Liu et al., 2023): (1) relaxes the
constraint that the embeddings of prompts be the embeddings of natural language words,
opening the possibilities for the integration of multi-modal prompting vectors (as proposed
by Method 2 of the study). (2) Remove the restriction that the template is parameterized by
the pre-trained LM’s parameters but offers modular tuning flexibility. Instead, templates
have their own parameters that can be tuned based on training data from the downstream
task.

2.3.4 Parameter Updating Strategies in Prompt Research

Due to prompt engineering in prompt-based downstream task learning, there are usually
two types of parameters, namely those from (1) pre-trained models and (2) prompts. This
leads to multiple parameter updating strategies in prompt-based studies, including tuning-
free prompting, fixed-LM prompt tuning, fixed-prompt LM Tuning, prompt+LM tuning,
as summarized by Liu et al. (2023).

2.3.5 Advantages: aligning prompts with cognition signals for NLP

The advantages of adopting prompting in NLP over direct model fine-tuning echo with
the challenge of cognition-enhanced NLP research reviewed in the last section 2.2 in the
following aspects.

Noise-resistant model optimization First, prompting improves task-specific perfor-
mance by providing explicit instructions or cues, enabling models to focus on relevant
information and excel in specific NLP tasks. This makes prompting an ideal approach for
integrating cognition signals that also contain inevitable noise, especially in terms of EEG
data in a high noise-to-signal rate (Hollenstein et al., 2020a).

Task-generic flexibility Second, it provides flexibility and adaptability by incorporating
domain knowledge or external information, allowing models to leverage context and

generate more accurate responses. With the right prompt, the language model can be
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steered towards a wide array of tasks without having to retrain the model from scratch
for each task. This flexibility echoes with the essence of cognition-enhanced NLP studies
to ultimately guide the model processing with human processing information without
damaging the model performances, and can allow the cognition-prompted model potentially
perform well on both text-cognition paired input and purely textual input in various task
settings.

Data-efficiecny Furthermore, prompting reduces reliance on large amounts of task-
specific data for training, making it a tempting approach in integrating cognition data into
NLP, since task-specific textual data annotated with cognition signals is still limited or
expensive at present (Hollenstein et al., 2020a; Ribeiro et al., 2023).



Present Study: Cognition-Prompt-Based Finetuning

3.1 Motivations: grounding cognition signals as condi-

tional prompts

Based on the assumption from the cognition theory and empirical cognition-enhanced
NLP research, gaze information (e.g., fixation durations) and word-level EEG features
(from different electrodes mapping the brain) inherently encompass processing patterns of
human readers about which parts of a sentence is more critical for performing the natural
language processing task. Such processing information has been corroborated by previous
cognition-inspired research to be able to provide positive guidance for LMs in performing
downstream tasks. However, the challenge of integrating cognition data is to make the
LMs learn to associate the cognition signals of humans processing the text input during
reading with the textual input that are also given to the LMs for task-specific training, in
search for a performance boost. As enumerated in Related Works, the previous methods in
cognition-integrated NLP studies, including (a) directly concatenating dimension layers on
word vectors and (b) regularizing the attention weights of the LM with numerical human
cognition values, suffer from issues like heavy manual bias and low possibility of extending
to larger models.

This study proposes that the cognition features can be considered as the equivalent of
language data, and therefore, prepended as prefix prompts that are ’cognitively conditioned’
on the text inputs. Such conditioning is not updated by traditional prompt engineering
algorithms developed in NLP research (Li and Liang, 2021; Shin et al., 2020), but produced
by human readers during their intrusive processing of the same text input and readily
provided by the cognition corpora before training. Another nuance between the cognition
prompts and the traditional text/text embedding prompts is that cognition features as
prompts serve as some meta-processing guidance on the importance or certain traits of

the word in the exact same position of the later input sequence. In other words, whereas
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the traditional prompts are typically semantically related texts to the original input, the
“cognitively condition’ prompts in this study are inherently the same sequences as the
input on a meta-cognitive level. Consequently, the LM is tasked to learn the word-by-word
correspondence between the prompt and the input and use the information to improve the
label prediction accuracy.

Hence, the study integrates cognition features as additional ’cognitively conditioned’
prompts with the original text inputs, and updates the model parameters on such input,
with the aim of training the model to capture the inherent association that the cognition
prompt patterns are informative about the processing complexity and relative importance
of the specific part among the sequences.

3.2 Study Design

This thesis takes inspiration from the recent NLP approaches to prompt-based finetuning
and multimodal learning and develops two different methods for incorporating cognition
data that are much more adaptable for state-of-the-art language models. Instead of the
traditional methods of directly augmenting dimensions of word embedding or extracting
cognition features as target output for supervision, the cognition signals were treated as (1)
sequences of cognition special tokens (i.e., analogical to text tokens) in Method 1, or (2)
sequences of cognition vectors in Method 2, to be prepended with the textual sources from
which the cognition signals were originally recorded human participants reading.

Hence, the cognition data were treated as additional prompts in the input to specify
model behaviour, based on the power of prompting as a mainstream training approach
from previous research (Liu et al., 2023). Method 1 assumes the pre-trained LM’s ability
to directly process and leverage numerical values of cognition signals when converted to
string tokens; Method 2 converts cognition feature values into multidimensional vectors
that can be projected in a ‘CogMAP’ framework to the embedding space of pre-trained
LMs.

In general, this thesis offered exclusive contributions to renewing the methodological

paradigms of cognition-inspired research by investigating the following hypothesis:

1. Can cognition features can be introduced as effective prompts to state-of-the-art
pre-trained models for sentiment classification task training, by concatenating text
input with numerical cognition signals either as discrete special tokens (Method 1)?

2. Can cognition features can be introduced as effective prompts for sentiment classifi-
cation task training, by training a projection module to map the numerical cognition
signals as prompting vectors in the continuous embedding space of the pre-trained
language models (Method 2)?
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3. Among cognition features, can both EEG and gaze (i.e., eye-tracking) signals can
offer unique positive guidance to the language models’ classification performance?
Will the combination of cognition features further increase the training perfor-

mance by providing potentially more meta-cognitive guiding information for text-
processing?



4

Method 1: Inserting Special Tokens of Cognition Features

for Prompt-Based Finetuning

Drawing on the hard prompting approaches in recent vision-language models (Koh et al.,
2023), Method 1 operates feature incorporation in a straightforward approach by directly
converting the numerical values in cognition features into strings. The multiple features
of gaze and EEG data were therefore linearized into a sequence of strings and integrated
separately or coordinately with the original textual sequences. The added prompts in this
study, therefore, do not count as a crafted task-specific instruction, answer example, or a
semantically related sentence in traditional prompting research (Liu et al., 2023), but are
numerical annotations of the subsequent sentence about the cognitive processing effort on
each word in it.

4.1 Input

The study utilizes the ZuCo corpus, which includes eye-tracking and EEG recordings
from 12 human participants reading 400 sentences—123 neutral, 137 negative, and 140
positive—from the Stanford Sentiment Treebank (SST) for sentiment classification tasks.
These samples, which constitute 4% of the full treebank, were randomly selected by the
authors of the ZuCo corpus from the ’very positive’, *very negative’, or 'neutral’ categories
of the SST-5. As of now, the ZuCo corpus is the only available dataset containing cognitive
data applicable to supervised learning tasks for sentiment classification. Despite this,
there are numerous other multilingual datasets (e.g., Danish, French, Dutch, Chinese, etc.)
available that focus on more common NLP tasks, such as named entity recognition, relation
classification (Hollenstein et al., 2020b), text summarization (Yi et al., 2020), or visual
question answering (Sood et al., 2021), thereby offering considerable scope for future

research utilizing the methods outlined in the current study.
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4.1.1 Gaze Features

As introduced, ZuCo readily provides 5 eye-tracking variables: number of fixations
(nFix), first fixation duration (FFD), total reading time (TRT), gaze duration (GD), and
go-past time (GPT). Fixations shorter than 100 ms were excluded in data preprocessing
following standard practices of data processing since these are unlikely to reflect language
processing (Sereno and Rayner, 2003). To increase the robustness of the signal (Bingel
et al., 2016; Hollenstein et al., 2020a), in this study, the eye-tracking features are averaged
over all subjects. However, the methods in this thesis allow modular training on multiple
participants for the purpose of catering to personalized contextualization in future studies
and applications. Notably, five gaze features are created based on the raw eye-tracking
variables, without any high-level transformation. Compared to the diverse feature extraction
methods mentioned in 2.2.3, this study adopts a much more straightforward feature
extraction solution for two reasons: to avoid heavy human-biased engineering in feature
extraction from which the early works suffered, and to reduce the sequence of the special
tokens to be added before each sentence input. The latter effectively constraints the
computational cost and device capability requirements for training, as well as avoids
potential contamination of the inputs due to a dis-proportionally long prompt. Such

concerns will also become more significant in handling EEG features.

4.1.2 EEG features

The simultaneous recordings of eye-tracking and EEG data from ZuCo enabled the extrac-
tion of word-level EEG features from the time-stamped raw data. During preprocessing,
23 out of 128 original electrodes in the outermost circumference (chin and neck) that were
used to detect muscular artifacts were removed for subsequent analyses, rendering 105
electrode values (Hollenstein et al., 2018b).

Following McGuire and Tomuro (2021), the 105 electrode values were mapped to
first-pass fixation onsets to create 105 fixation-related potentials (FRPs) for each word.
Although the variability between subjects is much higher in the EEG signal compared to
gaze data, EEG features were averaged across subjects following the established practices.
Both eye-tracking and EEG feature values were normalized between 0 and 1 using a
Min-Max-Nomralization scaler. Regarding words that only receive saccades (i.e., rapid
and ballistic movements of the eyes that abruptly change gaze position) without fixation
landed, the raw data yields void values for all gaze features and EEG features. Such
features were set as 0 to ensure the corresponding relationship between cognition prompts
and actual textual input on the word level. Lastly, all feature values are uniformed as
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floats with two decimals before converting recessive zeros and inconsistent patterns in the
prompts to minimize potential confusion for the model.

Due to the constraints of the sequence length for training, it is impractical to flatten the
105 features into 105 special tokens and insert them as prompts because the input would
exceed the maximum sequence length allowed by LMs, and risks diluting the original text
that contains the semantic information for class label prediction. This is admittedly one
of the major limitations of method 1 despite its perks of simplicity. As a compromised
alternative, this study resorts to dimension-reduction algorithms in machine learning
to shrink the number of special tokens denoting EEG features. Specifically, Principal
Component Analysis (PCA), a widely used technique for reducing the dimensionality of
large datasets, was adopted as an attempt to condense the 105 electrode values down to
a more manageable 5 features. It allows the potential to retain the essence of the EEG
data while not overwhelming the model’s input or diluting the semantic content of the text,

thereby preserving the feasibility of including EEG features in the training process.

4.2 Models

For the generalizability of the conclusion, a diversity of mainstream state-of-the-art lan-
guage models are employed as backbone models for training in Method 1. They include
both bidirectional encoder-only models (i.e., BERT, RoOBERTa-base, RoOBERTa-large) and

auto-regressive decoder-only models (i.e., GPT-2 and its larger variants), as shown in 4.1.

Table 4.1 Architecture hyperparameters of the pre-trained backbone LMs (Radford et al.,
2019). (GPT-2 refers to the smallest version of GPT-2s when not specified.)

Type Backbone model Parameter size Layers Dimensions
BERT 110M 12 768
Encoder-only = RoBERTa-base 125M 12 768
RoBERTa-large 335M 24 1024
GPT-2 (small) 117M 24 1024
Decoder-only  GPT-2 Medium 345M 36 1280
GPT-2 Large 762M 48 1600

To address the encoder-only category, both BERT and RoBERTa-large have been
enlisted due to their structural similarities, yet varied scale. These models have gained
widespread recognition for their robust performance in tasks involving understanding the
context of a sentence, making them suitable for investigating the cognition-prompting

approaches in the study. Their transformer-based architecture pre-trained on extensive
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volumes of data allow the models to capture long-range dependencies in the input data.
This, in turn, positions them advantageously to potentially discern the association between
cognition prompts and texts with greater effectiveness, in comparison to previous works
employing Bi-LSTMs in ternary sentiment classification tasks on the same set of data
(Barrett et al., 2018; Hollenstein et al., 2019).

GPT-2 and its variants as the decoder-only models were also included in the experiment
implementation. Method 1 starts with the basic smallest version of GPT-2, a publicly
accessible 124M-parameter autoregressive LM trained on the Pile dataset (Gao et al.,
2020). This base model is later expanded to larger-scale variants. Firstly, the structural
similarity across GPT-2 and its more advanced variants such as GPT-2-medium (355M),
GPT-2-large (774M), GPT-2-XL (1.5B), GPT-J (6B) and other state-of-the-art causal
language models like OPT (Zhang et al., 2022), etc., lends a level of convenience and
feasibility when scaling the backbone model. While encoder-only models are specifically
suitable for classification tasks, the trajectory of advancement in the field of NLP has
shifted somewhat towards autoregressive, decoder-only models, especially those with a
structure akin to the GPT family. This trend has motivated the inclusion of GPT-2 and its
larger variants in the framework design. Secondly, GPT models opened possibilities to
extend the proposed approach to a range of more diverse tasks other than classification
(i.e., generation tasks) in future studies. In addition, thirdly, the GPT-2 models, despite
their pretraining objective, have demonstrated similarly remarkable performance on tasks
including sentiment classification when properly fine-tuned with an adequate data volume.
(Radford et al., 2019). Therefore, in summary, opting for GPT-2 and its advanced variants
aligns with the study’s objective to evaluate the efficacy of large language models when
grounded on cognitive data in a generalizable setting. Considering a series of factors
including scalability, popularity, and task-generic adaptability, the GPT model architecture
offers the opportunity to systematically assess the impact of model size in the experiments,
as discussed later in the results section.

To deploy GPT-2 (and its variants) for the ternary sentiment classification task, a
classification head, i.e., a linear layer followed by a softmax function, is added on top of
the transformer’s output for the last token in the sequence. This head converts the hidden
state of the last token into probability distributions over the sentiment labels. The sentiment
label (’positive’, 'negative’, 'neutral’) with the highest probability is then selected as the

model’s prediction for the input text.
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4.3 Experiment Setup

Prompt design: special tokens

Method 1 linearizes 5 word-level gaze features/5 EEG features into 5 text tokens to
represent the human processing attention to each ‘word’. As introduced in related works,
each feature value ideally could denote a unique but complementary aspect of cognitive
information: for eye-tracking data that measures overt attention, GD, FFD, GPT, nFix, and
TRT denote different stages of processing; for EEG that mostly measures covert attention
and neuron activities, the original 105 values represent information extracted from different
regions of the brain which are compressed to 5 features. One challenge regarding designing
a prompt suitable for the model input is organizing the multiple eye-tracking/EEG features
for each word while at the same time not contaminating the text input.

In order to demarcate word-level multi-features among the prompt sequence for model
readability, as well as to guide the model to identify and differentiate each feature as
prompt input within its fixed vocabulary, five pairs of open and closing special tokens
are added to the LM tokenizer to account for five eye-tracking, and similarly five for the
experiment on EEG features. After adding these special tokens, the model’s embedding
matrix also needs to be resized to accommodate the new tokens. Taking GD (i.e., gaze
duration) among the eye-tracking features as an example, [GD] and [\GD] were added
as an opening or closing special token that signifies the start/end of the particular feature
annotation. As shown in Figure 2, between the pair of special tokens is the value of the GD
variable in the ZuCo corpus (after normalization) that sets the context for the numerical
value that follows and indicates that the value represents the GD feature. This format
clearly isolates between the multiple features within eye-tracking/EEG data for the given
word or phrase as well as excludes them from the model processing of the corresponding
textual input, allowing it to be easily recognized and utilized by the model tokenizer.

Another necessity of adding special tokens for filling the cognitive features is they
offer boundaries that prevent the string-formatted floats from being further tokenized. Both
tokenizers of BERT (WordPiece) (Wu et al., 2016) and GPTs (Byte-Pair Encoding or
BPE)(Sennrich et al., 2016) are sub-word tokenizers which split the floats into further
subunits if not in the tokenizer vocabulary (e.g., ‘0.56’ into [‘0’,‘5’,°6’]). In contrast, special
tokens that encapsulate these string-formatted features effectively "shields" numerical
values from subword tokenization, ensuring that these cognitive measures are processed
in a single unit with their specific contexts preserved. This function is essential because
the meaningfulness of the cognitive features lies not in their potential sub-parts, but in
their entirety as numerical values representing specific cognitive measures. Furthermore,

this practice also reduces input complexity. Conventional tokenization could inflate the
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number of tokens for string-formatted numbers. With special tokens, each cognitive feature
contributes only a single token value to the input sequence, improving efficiency but also

methodological feasibility considering the sequence length constraint of Method 1.

[FFD]119.0[/FFD] ... [nFix]4.0[/nFix]Presents [FFD]119.0[/FFD] ... [nFix]4[/nFix]
[FFD]73.0[/FFD] ... [nFix]3.0[/nFix]a [FFD]73.0[/FFD]... [nFix]3[/nFix]
[FFD]O[/FFD] ... [nFix]0[/nFix]good [FFD]None[/FFD] ... [nFix]None[ /nFix]
[FFD]104.0[/FFD] ... [nFix] 1.0[/nFix]of [FFD]104.0[/FFD] ... [nFix]1[/nFix]
[FFD]58.0[/FFD] ... [nFix]1.0[/nFix]human [FFD]58.0[/FFD]... [nFix]1[/nFix]
[FFD]151.0[/FFD] ... [nFix]1.0[/nFix]decency. [FFD]151.0[/FFD] ... [nFix]1[/nFix]

Presents agood ... of human decency.

(1)Word by word (2)Sentence by sentence

Fig. 4.1 Tokens Arrangement in a sample sequence prompted by gaze features. Each *word’
(split by the ZuCo corpus) carries five word-level gaze features, and hence five pairs of
special tokens (i.e., [FFD], ..., [nFix]).
The first prompt-placement paradigm was shown on the left, where the word-level gaze
features are inserted before each word within the textual sequence; the second paradigm
was shown on the left, where the word-level features are aggregated together as a sequence
before concatenating with the textual sequence as a whole.

Prompt placement

The goal of the cognition-integration experiments is to investigate whether the prompt-
based finetuning method with raw cognition features as sequences of textual tokens can
be spontaneously ‘analysed’ by state-of-art LMs as useful information to enhance task-
specific performance. As shown in Figure 1, two paradigms of prompt placement were
explored: (a) inserting the corresponding word-level feature token before each word during
a sentence (as split by blanks, and aligned with the word tokenization style by ZuCo), or
(b) concatenating the corresponding sequence of feature tokens altogether before each
complete sentence. This is due to a conundrum in the motivation of pursuing superior
model performance: on the one hand, word-by-word prompting may guide the model to
better capture the denoting association between cognition features and the corresponding
word in the exact same position among two sequences; on the other hand, such method
of introducing multiple tokens within a sentence sequence can potentially interfere with
the language model’s ability to effectively tokenize the text and correctly assign attention
masks to the word embeddings. This in turn can disrupt the contextual information
associated with the target token, an aspect that is vitally important for attention-based
language models. In comparison, the second paradigm resembles traditional tuning more,

where feature tokens are grouped together and placed before the complete sentence. This
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approach attempts to balance the need for integrating cognitive feature information without
compromising the inherent contextual flow of the sentence. This presents a compromise
between highlighting cognitive feature-word associations and maintaining the integrity of
the sentence structure for effective language model processing.

Ablation experiments of gaze/EEG/combination features were also conducted to further
assess the efficacy of these paradigms. By systematically omitting certain feature types
and observing the resultant model performance, the ablation analysis aimed to discern the

impact of each feature on the overall predictive capability of the model.

ET/EEG/ET+EEG
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Fig. 4.2 Model Architecture for Method 1 (ET refers to eye-tracking i.e., gaze data).‘5/5/10°
denotes the number of features carried by ET, EEG, and their combination per *word’ (as
split by the ZuCo)

4.4 Training

The employed language models were trained on ternary sentiment classification tasks.
Given the limited size of the available dataset, we diverge from the conventional 8:1:1
training-development-testing split, and instead, randomly shuffle and divide the data into
50% for training, 10% for development, and the remaining 40% for testing. This atypical
configuration prioritizes obtaining a more reliable and rigorous testing performance score
by allocating a larger proportion to the testing dataset. The prompting approach inherently
allows for effective training on smaller datasets, further justifying this unconventional

data split. To enhance the robustness and representation of the model evaluation on the
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development dataset, we employ a 10-fold cross-validation method. An early stopping
mechanism into our model training protocol. This strategy stopped additional training after
a duration of 5 epochs without discernible enhancements on the development set. It offers
a balance between the computational expenses of continued training and the prospective
benefits derived from supplementary iterations.

Instead of a multi-task learning framework in previous works (Hollenstein et al., 2019;
McGuire and Tomuro, 2021; Sood et al., 2020b), the training objective in this study is
solely to optimize the prediction of sentiment labels. Due to the flexibility of the prompting
approach, we conducted experiments utilizing a variety of backbone models, encompassing
bidirectional encoder models (BERT and RoBERTa), as well as autoregressive decoder
models (GPT-2, GPT-2-medium, and GPT-2-large), from the Hugging Face Transformer
as outlined by Wolf et al. (2020) for implementation. During the training process, the
AdamW optimizer (Loshchilov and Hutter, 2019) is utilized, along with a linear learning
rate scheduler in accordance with the recommended setup from Hugging Face. All the
training experiments were implemented over five randomly chosen identical seeds. The
tuned hyperparameters include the number of epochs, batch size, learning rate, and random

seeds. Further details regarding these hyperparameters can be found in Appendix 1.

4.5 Advantages

The core of Method 1 revolves around linearizing the arrays of multiple features in eye-
tracking/EEG data, originally in the form of float values in the cognition corpus, into strings
and concatenate them as prompts before the text input. Despite seeming extremely simple
and ‘forceful’ in operation, it can potentially demonstrate effectiveness in integrating
cognitive processing information to enhance model performance due to several reasons.
Firstly, by transforming numerical cognition features into textual format, this method
fully exploits the inherent strengths of language models, which are essentially developed
to handle and extract patterns from textual data. Empirical examination of LMs has
demonstrated that pre-trained language models, though not liable for complex mathematical
reasoning tasks, naturally possess a great level of numerical comprehension (Wallace et al.,
2019b). Directly incorporating cognitive information in a format these models are primed
for, hence, ensures seamless integration and efficient processing while at the same time
avoiding damaging the model performance, a potential hazard in previous methods that
attempted at altering the inner attention layers of the neural network or the pretrained LM.
Secondly, the conversion process maintains the inherent structure and semantics of

the cognition data. For instance, the sequence of EEG features might correspond to the
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temporal sequence of cognitive states while reading the text, thereby providing temporal
context to the model, which could be critical for understanding the text.

Thirdly, when these transformed cognition features are combined with the original text,
it creates a richer and more informative input sequence for the model. This can enable the
model to ground textual information within the cognitive context, potentially enhancing
comprehension and representation learning.

Lastly, the simplicity of Method 1 may contribute to its effectiveness by avoiding com-
putational complexity and overfitting issues that could occur with more intricate feature
integration methods. The uncomplicated incorporation approach is not only computa-
tionally attractive but also has fewer parameters, thus reducing the risk of overfitting and
potentially making the model more generalizable.

In conclusion, the effectiveness of Method 1 could largely be attributed to its ability
to utilize the strengths of language models, retain the meaningful structure of cognitive
data, create a richer input sequence, and maintain computational simplicity and robustness
against overfitting. Future research should further investigate the impacts of this method
on various language tasks and seek to optimize the conversion and integration process for

even greater performance enhancements.



S

Method 2: Mapping Multidimensional Cognition Features

as Prompting Vectors

Method 2 draws reference from the ’soft prompting’ approach by converting the multi-
feature gaze and EEG data into multidimensional vectors and trains a mapping network to
map their dimensions to that of the language model input. By reshaping the numerical val-
ues into a single multidimensional vector to represent the cognitive processing information
per word, this method maps the cognition features, another data modality, to the semantic
vector space of language models. As a result, cognition prompting was performed directly
in the embedding space of the model. Method 2 can effectively address the constraints of
Method 1 with a limited number of incorporable cognition features due to the concern of

excessive sequence lengths.

5.1 CogMAP Architecture

Method 2 developed a unique framework termed ‘Cognition Mapping And Prompting’
(CogMAP), which aims to leverage the power of large-scale pre-trained language models,
and learns a small mapping network to convert n-dimensional cognition features into
i-dimensional embeddings that can be concatenated before text token embeddings as
prompts, where i refers to the token embedding in the vector space of the LM, as illustrated
in Figure 2. This is the first time that the prompting approach, one of the thriving model
deployment trends in NLP, has been introduced to cognition-enhanced research.

The CogMAP framework is composed of an LM tokenizer, a projection layer that han-
dles modality alignment by performing dimensionality projection, and lastly, a transformer-
based language model that trains on the concatenated embedding. The design of the
projection module is partially borrowed from Mafias et al. (2023) who implemented a
projection method for multi-modality alignment that learns a lightweight mapping between
the representation spaces of a pre-trained language model and a vision-language model

34
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Fig. 5.1 Overall Architecture of CogMAP.

to leverage their strong generalization capabilities. In the context of this study, since
cognition corpora can provide an aggregation of variables that resemble multidimensional
vectors, cognition features already serve as ’encoded’ cross-modal embedding (similar to
image embedding encoded by a vision-language model). Hence, the main objective of the
CogMAP architecture is to introduce the cognition vectors into the representation spaces
of a pre-trained language model in order to process and comprehend the multimodal input.

In general, the CogMAP framework accepts a pair of texts and the corresponding
cognition features (gaze/EEG/combination). The cognition features are first forwarded
as multidimensional vectors to a projection layer for dimensionality projection, then
concatenated together with the tokenized text embeddings to create the input that can be

learned by the pretrained language model. Below is a detailed breakdown of its structure.

Pre-trained language models The LMs employed by CogMAP in Method 2 as backbone
models are decoder-only pretrained models (i.e., GPT-2, GPT-2-medium, GPT-2-large),
leaving the design of adapting encoder-only models for future work.

Before training, the text input is first segmented and padded into a fixed sequence
of discrete tokens by the LM’s tokenizer. In particular, when implementing training on
decoder-only models, sequences are left-padded adhering to the established norms for
training a GPT model for classification tasks, thereby designating the final token as the

target for predicting the output. Then, each token is subsequently transformed into a
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continuous embedding of size D; (e.g., in GPT-2-small’s case, D; = 768) by the LM’s
token embedder. Subsequently, the sequence of token embeddings is then introduced to
the self-attention layers within the language model’s transformer block, which employs
causal attention. At this point: rather than directly utilizing the language model to produce
hidden states corresponding to each text token or embedding for probability distribution
and prediction, the CogMAP concatenates the cognition embedding sequence (which has
already been mapped into the same dimension of D;) with text embeddings representing the
same sequence. This process merges the two modalities of input into a singular sequence.
The attention masks for both types of embeddings are also concatenated to signal to the
language model their respective positions of attention. Ultimately, the language model
processes this concatenated input (in the form of embeddings in this study), outputting a
sequence of hidden states corresponding to each token that are utilized to predict sentiment
labels.

Projection Layer In terms of cognition input, each gaze/EEG vector represents the
cognitive processing information of one word in the textual sequence - as readily split
by the ZuCo corpus and therefore requiring no tokenization. However, note that such
word splitting is defined by the corpus and not aligned with the tokenization of the LM
of the same text sequence. Since all transformer models require the input, regardless of
the format, to be of the same length, such multidimensional vectors are also left-padded
using a specially added padding vector (set as the vector of —1s) by CogMAP with the
maximum sequence length being the maximum number of word-level cognition vectors
among sequences (split by ZuCo) before forwarded to the projection layer.

The projection layer takes as input the fixed-length sequence of original multidimen-
sional vectors representing the complete information of cognition features corresponding
to the sequence of text, and performs a linear projection. It is therefore a simple mapping
network of a linear projection layer that updates its weight matrix. The weight parameters
of the projection layer are randomly initialized by default using the Kaiming Uniform
initialization method from PyTorch, and biases are set to zero. Two additional hyperparam-
eters were concatenated as constants with the projection layer parameters to improve the
quality of projection: output length (i.e., the maximum number of cognition vectors in a
sequence in padding, 41 for the dataset of this study) and input dimensions (e.g., = 768 in
the case of GPT-2 and its variants). After dimensionality projection, the projection layer
forwards the sequence of transformed ’cognition embedding’ to LM for concatenation

with the corresponding sequence of token embedding.
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5.2 Input

The preprocessing of eye-tracking and EEG features from the ZuCo corpus in Method
2 mirrors the approach used in Method 1. However, Method 2 alleviates the limitations
regarding the quantity of cognitive features, thereby maintaining the original 105 EEG
features per word without necessitating dimensionality reduction via PCA. For the purpose
of ablation studies, experiments were conducted using eye-tracking features, EEG features,
and a combination of both as input prompts. With the array of variables available in the
ZuCo dataset, each cognitive vector—prior to dimensionality projection—consists of 5
dimensions for gaze vectors, 105 dimensions for EEG vectors, and 110 dimensions when
gaze and EEG vectors are combined.

The sequence of multi-dimensional vectors is input into the multi-modal CogMAP
framework, where it is merged with the original text input to form ’prompting vectors’
for the classification encoder of language models to process. Specifically, the handling
of cognition vectors is bifurcated into two facets: dimensionality-wise and sequence-
wise. In terms of dimensionality, the mapping module in the CogMAP framework aligns
the modality of cognitive data with texts, as elaborated in 5.1; As for sequence-wise
handling, akin to Method 1, the mapped cognition vectors are padded and inserted before
the text token embeddings in the language model’s inner vector space, accompanied by a
combination of their attention masks.

Essentially, in Method 2, a sequence of multi-modal embeddings — encapsulating the
full cognitive feature information (gaze, EEG, or a combination of both) of its subsequent
textual input sequence — is concatenated prior to the original textual sequence. Through
mapping the cognition embedding to the vector space of the language model, it is hypothe-
sized that during training using the input added with cognition-vector prompts, the LM will
pick up the association between texts and its corresponding cognitive guiding information
indicated by the continuous values in the preceding gaze/EEG/both embeddings. Hence,
based on the cognition informatory theory, this is expected to inspire superior performances

in downstream task deployment.

5.3 Experiments

The training task and experiment setting maintains the same as Method 1. However, due to
practicality considerations based on empirical observation of Method 1’s results (i.e., 6.1.1),
only the second prompting paradigm is implemented, concatenating the whole sequence
of cognition prompts before texts, rather than interleaving the word-level fragments of

cognition features into text sequences.
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In addition, Method 2 doesn’t require the addition of special tokens to alter the language
model tokenizer’s configuration. This is because cognition prompting is performed in
the continuous multidimensional embedding space of the pre-trained language model.
Compared to Method 1 where the string sequences of cognition prompts need to be marked
as special token values because such numerical input does not fall within the pretrained
language model’s fixed vocabulary of discrete tokens, Method 2 offers an alternative with
less manual operation to the inner structure of the LM. Instead, through updating the
parameters of the projection layer as well as the language model during training, while the
language encoder learns the sentiment classification task, the projection layer in CogMAP
also learns to adjust the position of the cognition prompt embeddings closer and closer to
the embeddings representing the corresponding output sentiment label in the continuous
semnatic vector space within the language model at the same time. Hence, the finetune

CogMAP framework can learn to

5.4 Training

Similar to Method 1, prompt-based fine-tuning was adopted, except in the form of con-
tinuous soft prompts in the vector space. Specifically, CogMAP is trained with a simple
fine-tuning objective on cognition-text pairs (Lamb et al., 2016), treating cognition input
as multimodal pseudo-dynamic prompts, i.e., we minimized the cross-entropy loss (i.e.,
negative log-likelihood) of the sentiment labels for each sequence i in batches of size
N with sequence-level prediction y;, under the LM conditioned on the corresponding
prompted input. Rather than LM-fixed tuning, this study chose to train both the projection
layer (i.e., linear projection layer) from scratch and the pretrained LM, because decoder-
only pre-trained models like GPT-2 do not have the zero-shot capability of performing
classification tasks. The training process is also illustrated in Figure 2.

The training objective of CogMAP is defined as

1 N 3
Zsc(Om, 0) == _NZZ)’iIOgPG()’ilTiyci)
i=1

where 6,, and 6; refer to the learnable parameters of the projection layer and the LM, 7; and
T, are the text and cognition input. y; is the ground-truth sentiment class while pg (v|T;, C;)
is the Softmax probability of the predicted sentiment label for the i-th input under the
parameter set 0 = {6;, 6,,}, During training, 6 were updated to output the the predicted
label with the highest probability compared with the ground-truth sentiment y;.

The modular framework is designed to be flexible for future adaptation to a diversity of
tasks. Due to the nature of the employed models and the task, the parameters of both the
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mapping network and the LM are updated. However, similar to MAPL, this framework can
be trained modularly by only updating the mapping network but keeping the LM frozen
for other deployments. This opens possibilities for future studies investigating few-shot
learning or LM-freezed prompt tuning on LM for more tasks on the cognition-integrated
input in the future.

5.5 Advantages

Method 2 not only retains the advantages of Method 1 but also remedies its shortcomings
by mapping the cognition features into a higher-dimensional space. By simply connecting
an additional linear projection layer before the language encoder, it renders the cognition-
prompting approach more flexible and clean. To elaborate, Method 2 offers the following
three key advantages.

Firstly, it removes the restrictions associated with the number of cognition features that
can be integrated. By converting the multi-feature gaze and EEG data into multidimensional
vectors, it bypasses the excessive sequence length issues encountered in Method 1. This
allows the preservation and use of the full set of 105 EEG features per word, effectively
leveraging the richness of the cognitive processing information.

Secondly, Method 2 enables a more explicit word-by-word association within the
prompted input, thus creating an optimized learning environment for the language models.
The sequence of multimodal embeddings, which is of the same length as the number of
words in the original text input, is concatenated before the original text sequence. This
approach provides a comprehensive representation of cognitive feature information (gaze,
EEG, or combination) associated with each word. Consequently, this can aid the language
model in discerning the cognitive-feature-to-word association, facilitating a deeper and
better comprehension of cognitive influences on language processing.

Thirdly, Method 2 eliminates the constraint observed in both Method 1 and previous
methods wherein the input is solely parameterized by the pre-existing parameters of
the language model. Instead, input features are endowed with parameters based on the
architecture of the model framework, specifically in CogMAP, the mapping network
interconnected with the language model. This setup provides the flexibility for modular
tuning, which means that these parameters can be separately optimized to better adapt to
the cognitive feature inputs, thereby providing a more efficient and adaptive model for
processing and mapping cognitive data. This advantage underscores the ability of Method
2 to evolve and optimize according to the specificities of the cognitive data at hand, further

enhancing the performance and adaptability of the language model.



Results and Discussions

After training, the final models were evaluated on the held-out test dataset of 160 samples.
The splitting ratio of 40% of the total 400 datasets ensures the reliability and validity
of test accuracy, sacrificing the relative size of training data which is less of a concern
considering the nature and perks of using prompt-based fine-tuning that requires fewer
data in nature in this study. The results are reported after averaging over five random seeds.
6.1 and 6.2 show the evaluation results in Method 1 and Method 2 on a range of backbone
LMs including encoder-only models (i.e., BERT, RoBERTa) and decoder-only models (i.e.,
various variants of GPT-2).

When assessing the outcomes of the current study, it’s crucial to underscore that the
principal metric hinges on contrasting cognition-prompt-enhanced models against baseline
models trained exclusively on textual data. This is guided by our primary research question
revolving around whether human cognitive processing signals can enrich language models,
thereby bolstering their performance on specific NLP tasks, via a novel method of prompt-
based fine-tuning. In contrast, comparisons with prior research in cognition-inspired
NLP, which predominantly utilized more basic language models (generally confined to Bi-
LSTMs and BERT, without delving into more advanced models), may not yield substantial
insights. This is because the current study is geared towards integrating a cognitive corpus
into state-of-the-art language models of increasing sophistication and scale. Thus, our
focus is primarily on advancements within this specific context, rather than benchmarking
against older, potentially less-relevant research.

The performance metric across all experiments is the overall accuracy score. In line
with the statistical analysis approach employed in cognition-inspired research (Hollenstein
et al., 2019; McGuire and Tomuro, 2021), the two-sided Pitman’s permutation tests (Dror
et al., 2018) were conducted on final accuracy measures to establish statistical significance.
This was applied to comparisons between six different configurations across two methods

and their corresponding baselines for each backbone model.
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Furthermore, the Bonferroni correction was also implemented as a conservative sta-
tistical technique to account for multiple hypotheses. This adjustment rejects the global
null hypothesis if p < a/N, where N signifies the total number of hypotheses (Dror et al.,
2017). In the scenario of the current study, N equals 6, representing the combination of the
two methods and three configurations (EEG, gaze, and EEG+gaze). The values are marked
with asterisks in the result tables where the improvements were statistically significant
over the text baselines (** for p < o = 0.001, * for p < o = 0.01), even after applying
the Bonferroni correction. Despite the limited data, the findings of consistent significance
can suggest that incorporating cognitive features into NLP systems through prompt-based
fine-tuning is not only effective but also consistently generalizable.

6.1 Method 1

6.1.1 Word-Level Interleaved Cognition Prompts are Sub-Optimal

As previously outlined in Section 4.3, Method 1 adopted two distinct paradigms of prompt
placement. The primary, relatively unconventional paradigm that involved introducing
word-level cognition prompts prior to each word’ (as segregated directly by the ZuCo
corpus), generated initial results that fell short of expectations. Notably, classification
accuracy for BERT (41.80%), RoBERTa-base (43.22%), and RoBERTa-large (51.87%)
demonstrated a considerable downturn when contrasted with text-baseline outcomes.

This decline is hypothesized to stem from the disruptive influence that the introduction
of cognition prompts had on the inherent contextual dependency among tokens within
transformer-based language models. The fragmentation, brought on by the inclusion of
‘word-level’ prompts, appeared to negatively impact these models’ capacity to process
comprehensive text sequences. Despite theoretical proposals suggesting that pretrained
language models could discern the distinctive role of cognitive prompts as special tokens
and learn to compartmentalize them during attention assignment, the empirical observations
pointed out that such a prompting paradigm results in an unnatural sequence flow that
hinders the model’s ability to correctly comprehend and interpret textual context.

Upon a more in-depth examination, it was observed that a potential issue contributing to
the problematic prompted input was the misalignment between the sub-word tokenization,
carried out by language model tokenizers, and the position of word-level prompt insertion,
determined by ZuCo’s predefined splitting of word-level cognitive data. Consequently,
it becomes challenging for the language model to learn the corresponding association
between text fragments (tokenized as subword tokens) and special tokens of word-level
cognition prompts, let alone strategically allocate attention scores.
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In summation, the exploration of fragmentary cognition prompts interlaced with text
in Method 1 highlights the necessity of preserving the natural flow and continuity of
sentences for optimal performance in future cognition-prompting research. Given the less
than satisfactory preliminary outcomes, the examination of the first prompt placement
paradigm was discontinued to conserve computational resources for further exploration

and fine-grained analyses of more promising settings and models.

6.1.2 Sentence-level Cognition Prompts

Table 2 shows the overall accuracy, as well as weighted precision, recall, and F1 scores of
the cognition-prompted models compared with baselines which were pre-trained backbone
LMs finetuned solely on text inputs. For better visualization, the accuracy results were

extracted and drawn in 4.2 too.

Model Text-baseline Gaze EEG Gaze + EEG
A P R F1 A P R Fl1A P R F1 A P R F1
BERT 70.0 70.8 70.0 70.0 74.8*% 753 755 754 729% 725 727 726 712 71.7 719 71.8

RoBERTa-base 71.1 71.8 71.1 712 76.6** 77.1 773 772 749%* 754 756 755 70.1 70.6 70.8 70.7
RoBERTa-large 759 75.6 759 755 79.4** 80.0 802 80.1 79.1** 79.7 799 79.8 70.1 70.6 70.8 70.7

GPT-2 440 575 440 444 45.6% 462 464 463 451 455 457 456 412 417 419 418
GPT-2-medium 48.5 503 485 47.3 52.1%* 49.6 49.8 49.7 51.3* 519 521 520 424 429 43.1 43.0
GPT-2-large 473 465 473 43.0 53.0¥* 505 53.8 50.6 50.2*% 50.8 51.0 509 42.0 425 426 426

Table 6.1 Overall Accuracy (A), Weighted Precision (P), recall (R) and F1-score (F1) for
the ternary sentiment classification tasks augmented by gaze features, EEG features, and
the combination of both as discrete hard prompts. Experiments were run on encoder-only
models and decoder-only models for ablation purposes. The significance of accuracy as
the metric is indicated with the asterisks: * = p<0.01, ** = p<0.001 (Bonferroni method).
The largest accuracy values are in bold.

In general, the hard prompting method of inserting cognition features as sequences
of discrete special tokens achieved consistently superior classification accuracy when
evaluated in comparison with text baselines. However, a comparative distinction should
be drawn between BERT-based models and GPT-based models due to their variation in
absolute accuracy scores and performance under the influence of cognition-prompt-based
finetuning. The following subsections describe and discuss the results individually in
detail categorizations for BERT-based models and GPT-based models to shed light on their

distinctive performance characteristics.

Encoder-only vs Decoder-only Models Broadly inspecting 6.1, there is a consistent
statistically significant performance boost across BERT-based encoder-only models and
GPT2-based decoder-only models, with the inclusion of gaze and EEG features compared

to the text baseline. For example, RoBERTa-large, for instance, goes from a baseline
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Fig. 6.1 Graph of accuracy scores across models extracted from 6.1

accuracy of 75.9% up to 79.4% and 79.1% with the inclusion of gaze and EEG features,
respectively. This demonstrates that these cognitive features significantly enhance the
model’s ability to accurately perform sentiment classification tasks.

Nonetheless, a discernible performance gap emerges between GPT2-based models
and BERT-based models during the experimental implementations. In particular, GPT-2
and its variants illustrate a comparatively weaker performance increase when prompted
with gaze or EEG data and also lag behind BERT-based models in text-input baseline
experiments (i.e., 70.0-75.9 vs 44.0-48.5). This discrepancy may be primarily attributed to
the nature of GPT-2s as pre-trained language decoders designed for generation tasks rather
than classification tasks. Although a classification head allows for finetuning such models
for sentiment classification, it necessitates substantial data for proper finetuning to ensure
acceptable task-specific performance. This highlights the pivotal role of corpus size and
underscores the need for the collection of more NLP-task-related cognition signal corpora
in future cognition-inspired research.

Gaze vs EEG Delving into a detailed comparison between different types of cognitive
inputs, the models’ performance exhibited more significant improvement when gaze
features were incorporated compared to EEG features. This finding was consistent across
model categories, as accuracy scores with gaze features consistently surpassed those with
EEG features. To substantiate this observation, paired t-score analyses were conducted

comparing gaze and EEG columns across models, revealing a statistically significant



6.1. METHOD 1 44

difference between the classification performances (p < o = 0.01). This suggests that
EEG information, when introduced as discrete prompts in Method 1, offers less effective
guidance for sentiment class prediction than gaze information. This conclusion aligns
with previous research which enriched language models with cognitive data for various
downstream tasks (Hollenstein et al., 2019; Hollenstein and Zhang, 2019; McGuire and
Tomuro, 2021; Ren and Xiong, 2021).

This study proposes two potential, non-mutually exclusive reasons that may underpin
this observed nuance between gaze and EEG data, irrespective of the model types used.
Firstly, the gap may stem from the inherent capacity of gaze and EEG features to convey
the processing information that can be utilized by the models. As described in Chapter 2,
EEG has the capability to capture covert attention, implying processing efforts towards
peripheral vision or internal mental representations, without any related eye movements.
In contrast, eye-tracking explicitly monitors overt attention, reflecting the subject’s direct
visual focus.

Secondly, the difference could be a result of the low signal-to-noise ratio inherent to
EEG data and the additional preprocessing steps required to handle the EEG features that
could potentially obscure the underlying neural activation patterns in the brain. Specifically,
after excluding noisy electrodes, Method 1 involves a manual dimensionality reduction of
the 105 raw electrode values through Principal Component Analysis, as detailed in Chapter
4. This technique fits the sequence of EEG features into the text input as discrete special-
token prompts within the constraint of the LM’s maximum sequence length. However,
EEG data requires meticulous preprocessing and noise deduction, which is contingent on
different psycholinguistic testing paradigms, suggesting that the PCA technique used in
the current study may not be optimal (Shoka et al., 2019; Winkler et al., 2011).

Despite these considerations, the significance across models empowered by EEG
and gaze feature prompts demonstrates that Method 1 is an effective novel approach to
integrating either type of cognition data into state-of-the-art language models, underpinning
the fundamental first and second hypotheses of this thesis.

Single Feature Type vs Combined Features Contrary to the third hypothesis, models
incorporating single-type gaze or EEG features consistently outperformed those combining
both types of cognitive data, as shown in the last column of Table 6.1. Furthermore, the
amalgamation of gaze and EEG features in Method 1 failed to exceed the text baseline in
terms of accuracy and F1 scores for most of the underlying models.

To juxtapose the finding with past cognition-informed NLP research, there has been
conflicting evidence supporting a superior or inferior performance when integrating a
combination of gaze and EEG features compared to introducing solely gaze or EEG
data (Hollenstein and Zhang, 2019; McGuire and Tomuro, 2021; Sartakhti et al., 2021).
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Hollenstein et al. (2019) provided two plausible explanations for the nuances in such feature
ablations: firstly, the combination of gaze and EEG features decreases the signal-to-noise
ratio even more than for only one type of cognitive data; secondly, another interpretation is
that the eye-tracking and EEG signals contain information that is overly similar rather than
complementary. Thus, the combination does not improve yield better results.

On top of the two explanations above, this thesis discusses a unique interpretation
concerning the experiment configuration that potentially harms the accuracy of gaze+EEG-
prompted models: The underperformance of models using combined gaze and EEG
prompts in Method 1 likely stems not only from the interaction of these cognitive features,
but also from the constraints imposed by sequence length. As a significant limitation of
Method 1, the need to flatten multidimensional, word-level gaze and EEG features into
one-dimensional text tokens for hard prompting invariably results in extensive cognitive
prompt sequences. This has two adverse effects: (a) it dilutes attention towards the actual
text input, and (b) more detrimentally, it risks exceeding the maximum sequence length
configuration of a tokenizer.

Given the maximum sequence lengths accepted by GPT-2-based models (length =
1024) and BERT-based models (length = 512) against each word-level gaze+EEG feature
corresponding to ten (5+5) special tokens, it can be inferred that a portion of dataset
samples was likely truncated from the text part situated at the end of the prompted sequence.
This could lead to a negative impact on accuracy scores derived from prompting-based
finetuning. This calls for Method 2 evaluated in the following section which avoids
the constraints thoroughly by performing multidimensional prompting in the continuous
embedding space of the LM.

Scaling up Backbone Model Lastly, unsurprisingly an increase in the size of the models,
moving from BERT to RoBERTa-base and further to RoBERTa-large, leads to improved
performance. This trend suggests that larger models may be better equipped to exploit
the supplementary cognitive features for sentiment classification tasks. This observation
corroborates one of the rationales of this study, which aims to extend cognition-inspired
research to more advanced, large-scale, state-of-the-art language models.

Concerning the decoder-only models, although they also display performance enhance-
ments with the addition of cognitive features, these improvements are less conspicuous.
For instance, the standard GPT-2 model sees its baseline accuracy rise from 44.0% to
45.6% with the addition of gaze features and to 45.1% with the incorporation of EEG
features. This subtle increase accentuates the necessity of cultivating more high-quality
cognition corpora specifically designed for the adaptation of Natural Language Processing
tasks.
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6.2 Method 2

Method 2 focuses on decoder-only models whose text baselines yielded a considerably
low performance regardless of the model size. Nevertheless, while an insufficient amount
of data was shown to be unable to tune the GPT-2-based models to achieve an accuracy
comparable to the encoder-only BERT-based models, Method 2 aims to examine whether
employing a continuous soft prompting approach within the CogMAP framework could
guide the language model (LM) and the projection layer to capture the relationship between
cognitive prompting vectors, text embeddings, and the output labels, ultimately improving
the classification performance.

As presented in Table 6.2 and illustrated in Figure 6.2, the results clearly demonstrate
a significant increase in accuracy scores compared to the baseline models across all
experimental settings. Notably, when incorporating gaze features as cognition prompting
vectors, the performance surpasses that of the other two configurations of cognitive features
for all variants of GPT-2. The accuracy significantly rises from 44% to 66.3% in GPT-2
(small), with a p-value of less than 0.001, indicating strong statistical significance.

These findings highlight the effectiveness of the CogMAP framework in leveraging
gaze features as continuous soft prompts to enhance the classification performance of
decoder-only models. The extent of enhancement surpassed previous works on other
baselines ranging from null to %4 of accuracy growth on the same corpus (Barrett et al.,
2018; Hollenstein et al., 2019; Mishra et al., 2017; Ren and Xiong, 2021). The significant
improvements achieved in accuracy scores demonstrate the ability of the framework to
guide the LM in effectively utilizing the relationship between cognitive prompts, text

embeddings, and target labels.

Model Text-baseline Gaze EEG Gaze + EEG
Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1
GPT-2 440 575 440 444 63.0% 663 63.0 629 62.0** 644 620 62.5 60.5** 629 60.5 60.9

GPT-2-medium 48.5 50.3 485 473 51.5%% 543 51.5 50.8 54.0%% 56.0 54.0 53.7 59.0#% 61.3 59.0 584
GPT-2-large 473 465 473 430 555%* 578 555 557 57.0%*% 576 57.0 56.0 55.0%* 538 550 534

Table 6.2 Results of the CogMAP framework: precision (P), recall (R) and F1-score (F1)
for the ternary sentiment classification tasks augmented by gaze features, EEG features,
and the combination of both as continuous soft prompts. The significance of accuracy as
the metric is indicated with the asterisks: * = p<0.01, ** = p<0.001 (Bonferroni method).

While both Method 1 and Method 2 have successfully demonstrated the effectiveness of
the prompt-based finetuning approach for integrating multimodal cognition data proposed
in this study, there are some aspects of the results that render distinctive patterns worth

discussing, as elaborated below.
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Fig. 6.2 Graph of accuracy scores across models extracted from 6.2

6.2.1 Single Feature Type vs Combined Features

In examining the contrasting evaluation of Methods 1 and 2 in the results table, there was
observed a distinctive difference in performance when combining gaze and EEG features
to generate prompting input. Method 1 demonstrates a decline in downstream performance
in sentiment classification, ostensibly due to the excessive length of sequences that surpass
the tokenizer’s constraint. In contrast, Method 2, which circumvents this limitation
by conducting prompt concatenation in the high-dimensional embedding space of the
Language Model (LM), exhibits a significant enhancement in performance compared to
the baselines (p < 0.001).

Moreover, the comparative analysis of the three experimental settings (gaze/EEG/gaze+EEG)
reveals that the amalgamation of cognitive features does not consistently outperform single-
feature prompting conditions, except in the case of GPT-medium models. These mixed
outcomes are consistent with previous research, which has reported conflicting evidence
regarding the efficacy of combining two types of cognitive features. This leads to intriguing
questions: how can EEG signals be optimally preprocessed and more effectively denoised
for NLP tasks? Furthermore, how can we amalgamate EEG and eye-tracking data (and
potentially other cognitive processing signals or incidental data as per Plank, 2016) to
enhance downstream NLP applications more effectively?

As we scrutinize the influence of model size, it is intriguing to note that escalating the
size of backbone models from GPT-2 to GPT-2-large does not confer any improvements in
test accuracy scores over smaller-sized variants across all three gaze/EEG/combination

conditions. Two possible interpretations for this result are proposed.
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Firstly, the unexpected decrease in accuracy as model size increases may be related
to the changing input dimensions of the LM (i.e., 1024, 1280, 1600 as previously listed
in Table 4.1). These changes affect the requirements for mapping cognitive vectors into
higher-dimensional vectors in alignment with the token embedding of the LM. Given that
the dimensions of original cognitive vectors remain constant, a larger model essentially
implies a more complex task when projecting these vectors to a larger dimension, thereby
complicating the update process for the weights of the projection layers. As a result, larger
GPT variants may have a relatively more distorted projection module compared to smaller
models with a lower input dimension.

Secondly, it is plausible that the combination of two types of cognitive features might
confuse the LM. If the LM cannot distinguish the metacognitive information within the
high-dimensional data, it may be challenging for the model to differentiate between gaze
and EEG data. Since these two types of data are projected into the same embedding space,
the model might struggle to assimilate the distinct meanings of the two types of cognitive
features, potentially perceiving them as ‘too similar’ during training (Hollenstein et al.,
2019).

6.2.2 Class Prediction Analysis

This section conducted a more in-depth analysis of the Method 2 results to interpret which
particular aspect of the model predictions has been enhanced by the cognition-prompting
approach via the CogMAP method. As representative examples among the experimental
conditions, Fig.6.3 and Fig. 6.4 demonstrate the confusion matrices of GPT-2 and GPT-
2-medium trained on three types of cognitively-prompted texts (i.e., eye-tracking, EEG,
eye-tracking + EEG), evaluated on the held-out testing dataset. Each matrix shows the
probability of the model’s class prediction (on the x-axis) against the ground truth value i.e.,
the label (on the y-axis). Hence, the top-down diagonal elements indicate the proportion or
percentage of correctly classified instances for each class. The confusion matrix results
were normalized and weighted beforehand to mitigate the impact of the small data size
and potential class imbalance caused during the splitting of the small dataset in this study.

The major principle of the fine-grained findings from comparing the confusion matrices
is that the cognition signals via the CogMAP method particularly enhanced the GPT-2
model’s performances to predict negative and neural classes extensively, and effectively
mitigate the LM’s bias towards positive class prediction. The explanations and discussions
about different types of cognition prompt inputs are broken down below.

From 6.3(a), it can be observed on the GPT-2 baseline trained on uni-modal texts that
the model is able to predict relatively more correctly on the ‘positive’ sentiment sentences

(= .56), while is rather weak in correctly distinguishing between negative (.38) and neutral
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Fig. 6.3 Confusion matrices of GPT-2 evaluation in Method 2.

(.36) classes, a typical challenge of a multi-class sentiment classification task for language
models. Such bias is consistently found in the GPT-2-medium baseline in 6.4(a) and
the unshown GPT-2-large baseline. This suggests an intrinsic bias towards positive class
prediction in GPT-2 series of models, which was reflected saliently when finetuned on a
small dataset (i.e., simply 200 training samples). The similar biases inherently embedded
in pre-trained language models are also reported in numerous sentiment classification
studies. For example, Huang et al. (2020) and Garg et al. (2022) have investigated the
highly variable sentiment bias of language models including BERT, RoBERTa, and GPT-2
even trained on a large balanced dataset like a complete SST-2. It is further analysed
that token-level factors like gender, occupation, age, etc. can have a great undesired
impact on the model predictions (e.g., ‘baker’ is biased towards a positive prediction
while ‘accountant’ is biased towards a negative prediction (Huang et al., 2020)). In a more

analogical setting of small datasets, Zhao et al. (2021) drew the same conclusion that the
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in few-shot learning using sample inputs from SST-2.

Normalized Conusion Matrix (averaged over seeds)

negative { 0.29 0.29 s

neutral-  0.24

True label

positive - 0.15 0.18

A
&
@

Predicted label

pe \2" ‘b\
& RS
S &

(a) GPT-2-medium Baseline
(Overall Accuracy = 0.485)

Normalized Confusion Matrj (averaged over seeds)

negative

neutral

True label

-0z

positive - 0.07

-an

Predicted label

(c) EEG
(Overall Accuracy = 0.540)

Normalized Confusion Matrj (averaged over seeds)

negative

neutral

True label

positive- 005

-an

(A ~
) 2

&
A
& )
A =y
& QP-:

Predicted label

(b) ET
(Overall Accuracy = 0.515)

Normalized Confusionatrix (averaged over seeds)

negative

neutral

True label

positive - 007

-an

Predicted label

(d) ET + EEG
(Overall Accuracy = 0.599)

Fig. 6.4 Confusion matrices of GPT-2-medium evaluation in Method 2.

In contrast, the CogMAP prompt-based fine-tuning method extensively increases
prediction accuracy per class across all types of cognition prompts. On GPT-2 where the
biggest facilitation on overall accuracy was reported among all model variants previously
in Table 6.2, there is a significant rise of correct predictions in all three individual sentiment
classes. In the larger GPT-2-medium model, aligned with the overall accuracy difference
as previously discussed, the increase per class is moderately lower than GPT-2 and less
persistent across three sentiments, mainly due to the exceptions of the ‘neutral’ class
(baseline at 0.35 vs ET at 0.34, EEG at 0.36, ET+EEG at 0.44). However, a steady
enhancement of correct prediction rates is saliently demonstrated around the prediction of

the ‘negative’ class. It can be inferred here that the cognition prompts may have benefited
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the language models during the training process by intrinsically curbing their sentiment
bias towards a ‘positive’ prediction.

More specifically regarding the feasible mechanism, the gaze and EEG signals may
have provided (a) word-level and (b) general information related to the sentiment of
the ground-truth class label, as introduced in chapter 1 and 2: (a) on the word level,
the humans’ attention distribution towards certain tokens are reflected in both the eye-
tracking and EEG data which could carry semantic and contextual information about the
specific sentiment label (e.g., , higher signal values on specific words denote greater human
processing attention or neural activation, indicating their relative importance for predicting
the correct sentiment); (b) apart from learning the word-by-word association between the
preceding cognition prompt and the text input, sentiment-related information can also be
embedded in the whole sequence of cognition prompts as well (e.g., the electrode activation
regions are different when processing long-range inputs of diverse emotions (Kroupi et al.,
2011; Zhang et al., 2019)). During training, such information has been leveraged by the
GPT-2 models as additional cues to regulate its processing behaviour, thus adjusting the
classification threshold to achieve a more optimal performance.

Regarding the impact of different cognition features (eye-tacking vs EEG vs combina-
tion), an interesting pattern raised our attention: although EEG prompts generally worked
less effectively than eye-tracking in enhancing the sentiment classification accuracy, this
gap is reversed in the ‘neutral’ class in all GPT-2-based models. In both Fig6.3 and Fig6.4,
EEG-prompting experiments showed the highest correction rates in classifying neutral
sequences, among the other three types of input.



Limitations and Future Works

7.1 Limitations

There are several limitations of the current study that restrains its generalisability as
listed below. The first two are commonly found as a challenge in the line of cognition-
inspired research, while the third limitation discussing the numerical comprehension of
LMs is a topic uniquely relevant to Method 1 from the cognition-prompting-and-finetuning

framework proposed in this study. Future action points are also suggested for inspiration.

Reliance on cognition data The first major drawback of the current study, as well as a
universal challenge in cognition-inspired NLP research, is the strict reliance on cognition
data for the entire training and testing. It is not yet investigated how the cognition-prompted-
and-finetuned models from the proposed two methods will perform on text-only input for
evaluation. Same to the current study, this line of research was often evaluated on text
input paired with corresponding cognition signals ( and Casacuberta, 2022; Barrett et al.,
2018; Mishra et al., 2017). Barrett et al. (2016); Hollenstein et al. (2019) also notified the
issue and designed a word-type feature aggregation method to create a complete lexicon of
words with their averaged gaze and EEG feature values over all word occurrences in the
dataset. This approach took inspiration from the early word embedding research and is not
applicable to the current study due to its high sensitivity to bias in the cognition dataset
and our paradigm shift to pre-trained language models.

Future efforts are therefore to focus on evaluating and optimizing the cognition-
enhanced model on text-only inputs. Considering the strength of prompts in steering
away from overfitting and catastrophic forgetting, it is intriguing to examine whether
the enhancement by the cognition-prompt-based finetuning method can transfer to the
processing of text-only input. Nevertheless, if not, there are two potential options in further
investigations for optimizing the prompting methods: firstly, training on other tasks that
the LM is originally able to perform and implementing LM-fixed prompt learning instead

52
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of prompt-based finetuning so that the LM weights will not be disdained by the cognition
prompt input; secondly, training the model to reconstruct cognition signals from the text
(to be elaborated in ??, and in turn leverage them as prompts to facilitate other task-specific

performances.

Single task & language Secondly, the current study focuses on solely one task i.e.,
the ternary sentiment classification task. To solidify and generalize the efficiency of the
proposed two cognition-prompting methods, further studies can adapt the framework to
other common downstream tasks. Considering the existing cognition corpora that can be
utilized in future works, extended tasks can include relation classification (Hollenstein
et al., 2018b, 2020b), named entity recognition (Colman et al., 2022), and text generation
tasks (Sood et al., 2021).

The Numerical Reasoning Abilities of state-of-the-art LMs An under-investigated
factor in this study concerning the prompt-based approach is the numerical reasoning
ability of the deployed language models. Because the numerical values of cognition
features are treated as either discrete tokens in Method 1, the model’s understanding of the
numerical data can influence how well it absorbs and leverages the information provided

by the cognition prompt in the hard prompting paradigm.

7.2 Other Future Directions

Apart from the above limitations that call for future examination, discussion in this
study also provides insights into several topics that inspired other directions of cognition-

enhanced NLP research on a higher level.

7.2.1 More cognition signal corpora

As mentioned in the results section, the absolute performance level of the training models,
whether baselines or cognition-prompted models, are limited by the dataset scale from
ZuCo (%4 of the SST-5) (Hollenstein et al., 2020a). Because the goal is to compare the
performance gap between textual baselines and cognition-prompted models, the lack of
training data does not necessarily constitute a limitation that damages the rigorousness or
validity of the current research. However, it is intriguing to explore to which extent the
cognition signals can positively modify the pre-trained language models in large-scale data
settings, especially on GPT-based generation models which require a sufficient amount of

training data to perform classification tasks.
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Hence, this urgently calls for more collections of cognition signals recording partici-
pants on NLP-task-related text materials (Hollenstein et al., 2020a).

7.2.2 Other types of cognition signals

Exploring the integration of other types of cognition signals into language models is
also a worthy direction for future research. Apart from expanding the generalisability of
the method, replacing eye-tracking and EEG with those cognition signals lacking high
temporal resolution (e.g., fMRI) can also help solidify the fine-grained mechanisms of
cognition-enhanced NLP research. More precisely, this study introduced two possibilities
that cognition signals via prompt-based fine-tuning can facilitate language models in
ternary sentiment classification (i.e., by providing word-level or sequence-level general
cues).

Several studies have started exploring the utility of fMRI data in language models, but
the scope is mainly limited to fMRI signals recorded from listening to speech and centred
around understanding human cognition by making analogies from language models, rather
than enhancing NLP applications (Caucheteux et al., 2023; Willems et al., 2016). In a newly
submitted spotlight paper (not peer-reviewed yet), Takagi and Nishimoto (2022) claimed
to reconstruct images from fMRI signals recorded when participants were presented using
a vision-language model named Stable Diffusion. This study sparked heated discussions
on the prospect of incorporating cognition signals in language models in generation tasks.
Considering the particular strength of CogMAP when applied to generation models like
GPT-2 exclusively experimented in this study, the thesis encourages future works to explore

the adaptation of cognition-prompting to generation tasks.

7.3 Ethical Concerns

A range of cognition-related NLP research has commented on the underlying ethical issues
from collecting and utilizing cognitive data (Hollenstein et al., 2020a,b; McGuire and
Tomuro, 2021). These concerns encompass privacy issues due to potential subject identi-
fication, skewed representation and consequent standardization of certain demographic
groups, as well as the potential for the perpetuation of ingrained human biases. Similarly,
Sen et al. (2020) suggest the application of human attention supervision as a tool to
evaluate the legitimacy of attention as a reliable, human-like rationale for decision-making
within models. In parallel, Pruthi et al. (2019) highlight the potential for misdirection by
manipulating attention to create an illusion of reduced bias within models. Future research
could critically examine whether supervision based on human attention can serve as a foun-

dation to investigate cognitive biases that may be acquired by these models. Furthermore,
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this approach could also align attention-based explanations with model outcomes, enabling
high-performing models to adhere to auditor expectations in a more reliable and faithful

manner.



Conclusion

In conclusion, the integration of human cognitive signals as prompts in language models
presents a promising approach to enhancing their performance on downstream NLP tasks.
This thesis introduced two novel methodologies, Method 1 and Method 2, for incorporating
cognition data into language models and evaluated their effectiveness on the task of ternary
sentiment classification.

Method 1 explored the use of word-level and sentence-level prompts for introducing
gaze and EEG features into language models. The results showed that word-level prompts
disrupted the natural flow of sentences and hindered the models’ ability to comprehend and
interpret textual context. On the other hand, sentence-level prompts consistently improved
the performance of both encoder-only BERT-based models and decoder-only GPT-2-based
models. Gaze features were found to be more effective than EEG features as prompts, and
the combination of both types of features did not yield better results than using a single
feature type.

Method 2 employed a continuous soft prompting approach within the CogMAP frame-
work to integrate gaze and EEG features into decoder-only GPT-2-based models. The
results demonstrated a significant increase in accuracy compared to the text baselines
across all experimental settings. Gaze features as soft prompts outperformed EEG features,
and the combination of both types of features did not consistently outperform single-feature
prompting conditions.

These findings highlight the effectiveness of the prompt-based fine-tuning approach
in leveraging cognition data to enhance the performance of language models. The results
also suggest the need for further research in optimizing the preprocessing and utilization
of EEG signals, as well as exploring effective ways to combine multiple types of cognitive
features.

Overall, this thesis contributes to the field of cognition-inspired NLP research by
addressing limitations in current methodologies and providing a new framework for

integrating cognitive signals into language models. It opens up new possibilities for
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bridging the gap between human cognition and artificial language processing, improving
the performance and understanding of language models.
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Model Variants and Hyperparameter Configuration

Table A.1 The list of deployed language models in the study, with training hyperparameters
(Ir: learning rate; bs: batch size; epoch: training epochs). Experiments were run over 5
seeds [16, 17, 18, 19, 20]. The max sequence lengths are set as default.

Text-baseline Gaze EEG Gaze + EEG
Model Ir bs epoch ’ Ir bs epoch ‘ Ir bs epoch| Ir bs epoch
Method 1
BERT 3e-5 16 30 le-4 16 30 le4 16 30 le-4 16 30

RoBERTa-base | le-5 16 30 le-5 16 30 le-5 16 30 le-5 16 30
RoBERTa-large | 1e-5 16 30 le-5 16 30 le-5 16 30 le-5 16 30
GPT-2 3e-5 16 30 [3e5 16 30 [3e5 16 30 |[3e5 16 30
GPT-2-medium | 3e-5 16 30 |3e-5 16 30 |3e5 16 30 |[3e5 16 30
GPT-2-large le-5 16 30 le-5 16 30 le-5 16 30 le-5 16 30
Method 2
GPT-2 3e-5 16 30 [3e5 16 30 |S5e5 16 30 |55 16 30
GPT-2-medium | 3e-5 16 30 |3e5 16 30 |55 16 30 |55 16 30
GPT-2-large le5 16 30 |55 16 30 |55 16 30 |5e5 16 30
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Dataset Details

Table B.1 Descriptive statistics of reading materials (M = mean, SD = standard deviation,
R =range). The 400 selected sentences are comprised of 123 neutral, 137 negative and
140 positive sentences.

Task 1 Normal reading (Sentiment)

Total words 7079
Word types 3080
Total sentences 400
M SD R
Words per sentence | 17.7 8.29 3-43
Word length 6.97 271 1-26
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Table B.2 Details of all subjects in the study from ZuCo (Hollenstein et al., 2018b).
These scores are the percentages of correctly answered control questions in the respective
task. Reading speed is measured in seconds (with standard deviation in brackets). The
vocabulary and language proficiency of the participants was tested with the LexTALE
test (Lexical Test for Advanced Learners of English), an unspeeded lexical decision task,
which is for intermediate to highly proficient language users.

Subject ID | Age Gender LexTale Reading Speed Score
ZKW 25 Female 96.25% 6.94 69.57%
ZDN 32 Male 97.50% 3.91 89.13%
ZPH 26  Male 97.50% 4.78 89.13%
ZMG 51  Male 100.00% 4.39 91.30%
ZAB 41  Female 100.00% 4.88 76.09%

ZIN 51 Female 97.50% 8.71 54.34%
ZKH 41 Female 81.25% 542 76.09%
ZGW 49  Male 91.25% 6.87 71.74%

Z]S 42 Male 97.50% 4.34 91.30%
ZKB 26  Female 100.00% 5.39 89.13%
ZDM 25  Male 100.00% 4.41 76.09%
ZIM 41 Male  77.50% 6.22 80.43%

Average 38 - 94.69% 5.52 79.53%
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